Write your name here Surname	Other	names
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Paper: 1C		
Sample Assessment Mate Time: 2 hours	erial	Paper Reference 4CH0/1C
You must have: Ruler Candidates may use a calculate	or.	Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

S41646A

Turn over ▶

PEARSON

	0	4 He 2	20 Ne 10	6 ⊈ % €	\$ ₹ §8	134 8 x 24	[222] Rn 86	ully	
	7		€7 m 20 e	35.5 CI chame 17	80 25	127 - cons	[210] A sature 85	Elements with atomic numbers \$12.116 have been reported but not fully sufferitiested	
	9		16 0 0 8	32 Serie 16	79 84 34	128 Te (ell,rair:	[209] Po poenun 84	ive been repo	
	s,		14 N subogen 7	31 P etrisenerus 15	75 As arrence 33	122 Sb **********************************	209 Bi	rs 112-116 ha authenticated	
S	4		12 C cartess 6	28 Sitten 14	73 Ge permesum 32	50 50	207 Pb 82	mic number	
nent	ю		11 2000 5	27 Al almount 13	70 Ga 31	115 In nnem 49	204 TI ***********************************	ents with atc	
Elen					93 30 30	Cd Camum 48	201 Hg 80	Еют	
the					63.5 Cu apper 29	108 Ag silver 47	197 Au 79	[272] Rg remismum 1111	
e of	e of				28 S 28	59 28	106 Pd politicum 46	195 Pr 787	[271] Ds 110
Tabl					59 Co entrar 27	103 Rh modum 45	192 	[268] Mt	
odic		H Principles			56 26 26 26	Ru neherem	190 Os sement	(277) Hs 108	
Perio	•				S5 Mn narganese 25	[98] Tc actness	186 Re tertural 75	[264] Bh serbier 107	
The Periodic Table of the Elements			mass ool umber		52 creamen 24	96 Mo moynamum 42	184 W Iungotes 74	Sg seeking out 106	
		Key	relative atomic mass atomic symbol nama atomic (proton) number		51 V smature 23	93 AT 41	181 Ta Israelun 73	[262] Db semium 105	
			relative atorr atomic (p		48 Ti Isanur 22	91 Zr zmonum 40	178 Hf haftert 72	[261] RP 104	
					Sc scandum 21	89 ************************************	139 La* Iontfaror 57	Ac* 89	
	2		9 Be	24 Mg mapresum 12	40 Ca Salescen 20	SS Sr stronum 38	137 Ba Earum 56	[226] Ra rador 88	
	-		7 Li Ishur 3	23 Na 200m 11	39 K seasour 19	85 R b (ubayan 37	133 Cs 55	[223] Fr hansum 87	

" The Lanthanides (atomic numbers 58-71) and the Actinides(atomic numbers 90-103) have been omitted.

Cu and CI have not been rounded to the nearest whole number.

Answer ALL questions.

1 The table shows the properties of four substances.

Use the information in the table to answer the following questions.

Substance	Melting point	Boiling point	Conducts electricity when	
Jubstance	in °C	in °C	solid	liquid
Α	1650	2230	no	no
В	1538	2862	yes	yes
С	-7	59	no	no
D	801	1413	no	yes

Place a cross (XI) in the appropriate box to indicate your answer.

Choose from A to D a substance that could be:

(5)

(a) a metal	,		
A 🗔	В	C 🗵	D 🔃
(b) a glant cova	lent structure		
A 🖾	В	C 🖸	D 🖫
(c) an ionic cor	npound		/
A 🗔	В	C 🗄	D 🖾
(d) a liquid at 2	5 ℃	/	
A 🗔	В	c 🛛	D 🖫
(e) a solid at 16	00 °C		
A 🖾	В	C 🖾	D 🗔

(Total for Question 1 = 5 marks)

2	A student investigated what happened when a sample of wax was heated using a Bunsen burner.
	He set up the apparatus as shown in the diagram.
	solid wax HEAT
	The student heated the solid wax strongly with a Bunsen burner until it turned into a liquid.
	(a) Give the name of the process that occurs when a solid turns into a liquid.
	melting
	(b) Explain one change needed to make the experiment safer. (2)
ě	
0	Heat in water both or . Use test tube holder wax may catch fire prevent burning by
	not text tube
	(c) Describe the changes in arrangement, movement and energy of the particles when the liquid wax cools to become a solid. (3)
æ	Λ
	Arrangement bearnes more regulær
- W	Particles u brate in a fixed position
<i>\$</i>	Particles love energy.

(Total for Question 2 = 6 marks)

3 The diagram represents an atom of an element.

- (a) The diagram shows that there are equal numbers of particles A and C.
 - (i) State the name of each of the particles A and B.

(2)

- A Protons
- B Newbors
 - (ii) State the atomic number and mass number of this atom.

(2)

Atomic number 5

Mass number (b) (i) State the **name** of this element.

(1)

Boron

(ii) State the electronic configuration of this element.

(1)

2,3

(Total for Question 3 = 6 marks)

4 A student wanted to find out how easily different metal carbonates decomposed on heating.

She placed a sample of a metal carbonate into a test tube and heated it, passing the gas given off through limewater using the apparatus shown in the diagram.

She heated three other metal carbonates in turn and measured the time taken for the limewater to turn milky.

Her results are given in the table.

Metal carbonate	Time taken in seconds
copper(II) carbonate	5
magnesium carbonate	25
lead(II) carbonate	15
sodium carbonate	does not turn milky

4 (a) State the name of the gas that causes the limewater to turn milky.	(1)
Carbon dioxide	(1)
(b) Use the results to identify, with a reason, which metal carbonate decomposed most easily.	(2)
· Copper (11) carbonate	(2)
· limewater tuned milky in the least time	~e
(c) What do the results suggest about the effect of heat on sodium carbonate?	(1)
Paes not decompose	***************
(d) State two things that the student must do to make sure the experiment is valid (a fair test).	
1 " same vol/conc/amount of I mensater	(2)
· same frame / temp	
2 . Some amount/mass of solid	
2 . Some amount mass of solid a same his time of flime to tube a same from of solid. (Total for Question 4 = 6 ma	
a same from of solid! (Total for Question 4 = 6 ma	rks)
*	

5 Fractional distillation is an important process in the oil industry.

In this process, the crude oil is separated into a number of fractions. Each fraction is a mixture of hydrocarbons.

The diagram shows the column used for fractional distillation.

(a) What is meant by the term hydrocarbon?

ly hydrogen + curbon

- (b) Bitumen, diesel, gasoline and refinery gases are three of the fractions obtained from crude oil.
 - (i) Which one of these three fractions has the lowest boiling point?

(1)

refinery gases

(ii) Which one of these three fractions is the most viscous?

(1)

bitumen

5 (c) Explain how the separation of crude oil into fractions takes place in the fractionating column. (4) • Crude c. Vapours rises through the column. • There is femp gradient in the column life hother at the bottom than the top. • Different fractions have different boiling point. • Condense when they reach the part of the column that has a lower temp than their bp: • Bubble caps prevent liquid fractions trickling down. (Total for Question 5 = 8 marks)	
• Crude oil vapours rises through the column • There is temp gradient in the column/Its hother at the bottom than the top • Different fractions have different boiling point • Condense when they nearly the part of the column that has a lower temp than their bp: • Bubble caps prevent liquid fractions trickleny down.	5 (c) Explain how the separation of crude oil into fractions takes place in the fractionating column.
There is temp gradient in the column / Its hother at the bottom than the top • Different fractions have different billing point • Condense when they reach the part of the column that has a lower temp than their bp: • Bubble caps prevent liquid fractions trickleng down.	(4)
· Different fractions have different boiling point. · Condense when they reach the part of the column that has a lower temp than their bp. · Bubble caps prevent liquid fractions trickleng down.	· Crude oil vapours rises though the column
· Different fractions have different boiling point. · Condense when they reach the part of the column that has a lower temp than their bp. · Bubble caps prevent liquid fractions trickleng down.	. There is temp gradient in the column / Its hother
column that has a lower temp than their bp: Bubble caps prevent liquid fruitions trickling down.	at the bottom than the top
column that has a lower temp than their bp: Bubble caps prevent liquid fruitions trickling down.	· Different fractions have different boiling point
column that has a lower temp than their bp: Bubble caps prevent liquid fruitions trickling down.	· Condense when they reach the part of the
Bubble caps prevent liquid fractions trickling down.	column that has a lower temp than their
lawn.	1
lawn.	· Bubble caps prevent liquid fractions trickling
(Total for Question 5 = 8 marks)	1 1
(Total for Question 5 = 8 marks)	
	(Total for Question 5 = 8 marks)

6 (a) Isomers are compounds that have the same molecular formula but different displayed formulae.

The molecular formula C₄H₅ represents several isomers.

The displayed formulae and names for two of these isomers are

but-1-ene

methylpropene

(i) Draw the displayed formula and give the name for another alkene with the molecular formula C_4H_{ϵ}

(2)

Name but-2-ene

(ii) The displayed formula of another isomer of C₄H₈ is

cyclobutane

The general formula of cyclobutane is also C_nH_{2n}

State why cyclobutane is not an alkene.

(1)

No double band saturated.

6 (iii) Cyclobutane can be distinguished from but-1-ene by adding bromine water
and shaking. Bromine water is orange.
State what you would see when bromine water is shaken separately with each compound.
(2)
Observation with cyclobutane No colow change
Observation with but-1-ene Twns colowless
(b) Cracking is used to break long alkane molecules into shorter alkanes and alkenes.
Explain why this process is of such importance in the petrochemical industry.
chain hydrocarbons shorter chain hydrocarbons are more economically important e.g otheres in polymer/plashe industry.

(c) Cracking can be carried out in the laboratory by passing the vapour of an alkane over a heated catalyst using the apparatus shown.

decane soaked into mineral wool

When decane (C₁₀H₂₂) is cracked, a shorter chain alkane and ethene (C₂H₄) can be produced.

(i) Write a chemical equation for the cracking of decane.

(2)

C10H22 -> C2H4 + C8H18

(ii) The alkane produced can be used as a fuel for cars.

When this fuel is burned in a car engine, some incomplete combustion occurs. This produces carbon monoxide, which is dangerous to humans.

Explain why carbon monoxide is dangerous to humans.

(2)

· Toxic/poisonous

· Restricts blood carrying oxygen.

(Total for Question 6 = 11 marks)

- 7 Copper chloride is a soluble ionic compound. Solid copper chloride is green.
 - (a) A crystal of copper chloride was placed in a beaker containing water. It was left for several days.

Explain how the appearance of the liquid in the beaker changes after several days.

(2)

e green colour spreads throughout the liquid oby diffusion

(b) A chemist electrolyses a sample of molten copper chloride, CuCl₂.

Name the products formed at the electrodes.

(2)

Anode chlorine

Cathode Copper

(c) Write an equation to show the formation of the product at the negative electrode.

(2)

2CI-> CI2 + 2E

(Total for Question 7 = 6 marks)

8 Equal masses of iron, magnesium and zinc were placed in separate beakers, each containing 50 cm³ of copper(II) sulfate solution.

The mass of copper displaced in each case was found and each experiment was performed three times. The results obtained are given in the table.

Metal	Mass of copper produced in grams			
Metal	Experiment 1	Experiment 2	Experiment 3	
iron	1.1	1.3	1.2	
magnesium	2.3	3.2	2.2	
zinc	0.9	0.8	1.10	

(a) How can you tell that one of the results has been recorded to a greater precision than the others?	
	(1)
extra devoiced place for zinc an expt	3
(b) Write a chemical equation for the reaction taking place between magnesium and copper(II) sulfate.	(2)
mg + Cuso ₄ -> Mgso ₄ + Cu	
(c) (i) State, in terms of electrons, what happens when a copper ion becomes a copper atom.	
gains (two) electrons	(1)
(ii) What name is given to the type of change occurring in (c)(i)?	
Reduction	(1)
(iii) State two observations you would expect to make when magnesium is adde to copper(II) sulfate solution.	d
	(2)
· Solutions humy colowless	
· Bown solid forms	
o gets warm (Total for Question 8 = 7 ma	rks)

9	(a) An aqueous solution of hydrogen peroxide (H ₂ O ₂) decomposes very slowly into
	water (H ₂ O) and oxygen (O ₂) according to the following equation:

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

The reaction is faster when manganese(IV) oxide (MnO₂) is added. The manganese(IV) oxide remains chemically unchanged at the end of the reaction.

A student investigated the reaction in the presence of manganese(IV) oxide. He collected the oxygen gas produced and recorded its volume every five minutes. His results are shown in the table.

Time in minutes	0	5	10	15	20	25	30	35	40
Volume in cm ³	0	20	32	42	50	55	58	60	60

(i) The volume of gas given off between 5 and 10 minutes is 12 cm².
Calculate the volume of gas given off between 30 and 35 minutes.

(1)

Answer 2

(ii) Explain, in terms of the changes in the rate of the reaction and collisions between particles, why your calculated volume is less than 12 cm³.

(3)

« become there we fewer hydrogen peroxide particles

there fore less frequent collisions/fewer

(iii) After how many minutes did the reaction finish?

(1)

35

(b) What type of substance is manganese(IV) oxide in this experiment?

(1)

catalyst

 \mathcal{O}_{i} (c) Some of the graphs **A** to **F** below could represent changes occuring during the decomposition of hydrogen peroxide.

9	ind	wer the que Icate your an Ich graph co	swe	r.	y pla	cing a cro	ss ([×) in the ap	opro	priate box	to		
	(i)	the total ma			niven	off as the	evr	36	riment in	(a)	araceads?			
		A		В		,				(a)			F	(1)
	(11)	the mass of	hyd	rogen per	oxide	e remainin	g as	5 t	he experi	mer	nt in (a) pro	ocee	ds?	
		A		В		c			D		/	p ()	F	(1)
	(III)	the mass of	the	manganes	e(IV)	oxide as	the	e	periment	t in (a) proceed	ls?		
	Ø	,		В		c			D		E	ķ	F	(1)
						- Control of the Cont			(Total fo	or Q	uestion 9	= 9	mai	·ks)
				K.										
														_

10 When potassium iodide solution is mixed with lead(II) nitrate solution, a reaction occurs to form the insoluble salt, lead(II) iodide.

The equation for this reaction is:

$$2KI(aq) + Pb(NO5)2(aq) \rightarrow PbI2(s) + 2KNO2(aq)$$

A student carried out an investigation to find how much precipitate was formed with different volumes of lead(II) nitrate solution.

- He used a measuring cylinder to transfer 15 cm³ of potassium iodide solution into a clean boiling tube.
- Using a different measuring cylinder, he measured out 2 cm³ of lead(II) nitrate solution and added this to the potassium iodide solution in the boiling tube.
- A yellow precipitate formed in the tube and was allowed to settle.
- The student then measured the height (in cm) of the precipitate using a ruler.

He repeated the experiment using different volumes of lead(II) nitrate solution.

In each experiment, the potassium iodide solution and lead(II) nitrate solution he used were of the same concentration.

The graph shows the results he obtained.

(a) Explain why the line on the graph rises to a maximum level, but then does not change.

o More precipitale as more lead nimoto
present

eventually all popussium iodiale used up

$\mathcal{O}(b)$ (i) On the graph, circle the point which seems to be anomalous.	(1)
(ii) Explain two things that the student may have done in the experiment to g this anomalous result.	ive
	(4)
1 * Not left long enough	
· therefore precipitale not fully sottled	X
or . too much KI added	~
2 . So more precipitate made	9-1-1-14H-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
or tuke not vertical when precipitale	was
settling so precipitale not level.	
(c) The diagram shows a result of an identical experiment.	
precipitate of solid lead(II) iodide	
(i) How much precipitate has been made in the tube?	(4)
1.5	(1)
(ii) Use the graph to find the voume of lead(II) nitrate solution needed to make	
this amount of precipitate.	
2.8	(1)
3.8	
(Total for Question 10 = 9 m	arks)

11 Fluorine and chlorine are two elements in Group 7 of the Periodic Table.

Fluorine reacts with most elements in the Periodic Table, but it does not react with neon.

Neon is in Group 0 of the Periodic Table.

(a) Explain, in terms of the arrangement of electrons in its atoms, why neon is very unreactive.

(2)

· 8 electrons in the outer shell

· does not easily gain or lose electrons.

(b) The diagram on the left shows the arrangement of the electrons in a fluorine atom.

Use the Periodic Table to help you to complete the diagram on the right to show the arrangement of electrons in a chlorine atom.

(2)

(c) When chlorine gas is colourless solution tu		us solution of potassium	iodide, the
(i) Complete the foll	lowing ionic equation fo	or the reaction that take:	place.
			(2)
$Cl_2(g) + 2$	$I^-(aq) \rightarrow 2CI$ (a	ıq) + (aq)	
(ii) What is the name	given to this type of re	action?	
	7		(1)
Displaceme	ent /redox	Contract Con	
(iii) Why does the sol	ution turn brown?		
1 ,	,		(1)
lodine for	med		
The rest is oxygen.	with concentrated sodic is 21.6% by mass of sodi al formula of this compo	ium and 33.3% by mass	compound of chlorine.
Na	C1	0	(4)
	22.7	4 6 1	
21.6	53.		
×			
23			
23			
23	35.5 0938	16	
23 0.939 0.938	35.5 0938 0.938	2.819	
23 0.939 0.938	35.5 0938 0.938	2.819	
23 0.939 0.938	35.5 0938 0.938	2.819	11 = 12 marks)
23 0.939 0.938	35.5 0938 0.938	2.819 0.938 3	11 = 12 marks)
23 0.939 0.938	35.5 0938 0.938	2.819 0.938 3	11 = 12 marks)

12 Hydrogen can be prepared in the laboratory by reacting zinc with dilute sulfuric acid using the apparatus shown.

The equation for the reaction is:

$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$$

The reaction is fairly slow but, when copper(II) sulfate solution is added, bubbles of hydrogen form much more quickly.

A student decided to investigate how copper(II) sulfate solution increased the rate of this reaction.

She set up the apparatus as shown, without copper(II) sulfate present, and counted the number of bubbles of hydrogen produced every 15 seconds.

She then repeated the experiment with copper(II) sulfate present.

(a) Explain why her method of counting the number of bubbles of hydrogen might not give accurate results in her second experiment, with copper(II) sulfate present.

Bubbles may be different size

so not valid

or

leaution rate is faster

counting blubbles is more difficult.

(2(b) Describe how she should change the experiment to allow the collection of more precise results.	
	(2)
« Measure Ple volume of gas pro	Seere
« Measure the volume of gas pro	
The student then decided that she wanted to show that the gas collected was hydrogen. She burned a sample in oxygen and collected the colourless liquid that formed on cooling. If the gas were hydrogen then the colourless liquid should be pure water.	nt :
(c) Describe a physical test that she could perform to show that the colourless liquid	
is pure water.	(2)
Boils at 100°C	
The student's teacher said that even if the colourless liquid were pure water then does not necessarily mean that the gas was hydrogen.	it
(d) Suggest the name of another gas that produces water when it is burned in	
oxygen.	(1)
e a methane.	(1)
	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
(Total for Question 12 = 7 ma	rks)
	- STACE OF THE PARTY OF THE PAR

13 Ammonia (NH ₅) is manufactured in the exothermic reaction between nitrogen gas (N ₂) and hydrogen gas (H ₂) in the presence of an iron catalyst.	
$N_2(g) + 3H_2(g) \Rightarrow 2NH_2(g) \Delta H = -92 \text{ kJ/mol}$	
The nitrogen and hydrogen mixture is passed into a reaction chamber at a pressure of 200 atmospheres and a temperature of 450 °C.	
The reaction is reversible and, if left for long enough, can reach a position of dynamic equilibrium.	
(a) Why is a catalyst needed in this reaction?	
Speeds up reaction / lower activation energy / low temp can be used. (b) What is meant by the term dynamic equilibrium?	₩-
(b) What is meant by the term dynamic equilibrium ?	
Followsh + spaces o specifical care osciusaria	
forward + reverse reaching are occurring at same rute	
at same roce	
(c) A scientist working in the factory making ammonia suggested changing the reaction conditions to a pressure of 1000 atmospheres and a temperature of 250°C.	
Use your knowledge of equilibrium reactions and reaction rates to explain whether the scientist's suggestion was a good one.	
(4)	
o Increases pressure > increase gield -	
-> inchesse rate	
o Increases pressure → increase gield / → increase rate / legeare temp → recrease rate /	E-49
increase juld	
	(44.04
A	
+ concluding comment	.,,,,

(d) The mixture of gases leaving the reaction chamber contains unreacted nitrogen and hydrogen as well as ammonia.	
 (i) Explain how the ammonia can be separated from the unreacted nitrogen an hydrogen after the mixture has left the reaction chamber. 	(2)
« NH3 has a low boiling point	***************************************
· Mixture is cooled	
· NHz condenses	
(ii) What happens to the unreacted nitrogen and hydrogen after it has been separated from the ammonia?	(1)
(e) Ammonia is used to make the fertiliser ammonium nitrate (NH₄NO₂) by reacting ammonia with nitric acid.	
Write a chemical equation for the reaction between ammonia and nitric acid.	(*)
NH3 + HNO3 -> NH4NO3	(1)
(f) Describe a chemical test that you could perform to show that ammonium nitrate contains ammonium ions.	
Contains difficultiers.	(3)
+ NaOH (ag)	
· NHz vapours given off	
o tuns red litmus blue.	
(Total for Question 13 = 14 ma	rks)

14 Zinc phosphide (Zn_3P_2) is found in some rat poisons. It is an ionic compound manufactured by heating zinc and phosphorus together.	1
(a) (i) The formula of the zinc ion is Zn ²⁺ .	
Deduce the formula of the phosphide ion.	
	(1)
P3-	
(ii) Explain why zinc phosphide does not conduct electricity when solid, but does when molten.	(*)
	(2)
· lons are not free to more	when
15.128	
· lons are free to more whe	N
molten	
(b) Calculate the relative formula mass (M_r) of zinc phosphide.	
	(2)
$(65 \times 3) + (31 \times 2)$	
Relative formula mass = 25 7	
Neiditte formalis mass =	

(ψ (c) A bag containing 51.4 kg (51400 g) of zinc phosphide stored in a factory warehouse was accidentally contaminated with water. Zinc phosphide reacts with water to form zinc hydroxide and phosphine gas, PH3. The equation for the reaction is: $Zn_3P_2(s) + 6H_2O(l) \rightarrow 3Zn(OH)_2(s) + 2PH_3(g)$ (i) Calculate the minimum mass of water, in kg, needed to react with all of the zinc phosphide in the bag. (3) = 200 x 6 = 1200 x 18 = 21600g 21.6 Mass of water needed = (ii) The factory was evacuated because phosphine can burst into flames immediately when it comes into contact with oxygen in the air. What does this suggest about the activation energy for the reaction between phosphine and oxygen? (1) (iii) Is the reaction between phosphine and oxygen endothermic or exothermic? Use information from part (ii) to justify your answer. (1) · exothermic became it

i $\dot{V}_{\rm c}(d)$ (i) Phosphine is similar to ammonia (NH₂) in the way its atoms are bonded.

Draw a dot and cross diagram to show the arrangement of electrons in a molecule of phosphine. You should show only the outer electrons of each atom.

(2)

(ii) Explain why phosphine has a low boiling point.

(2)

« small/simple covalent molecule / « weak intermolecule forces.

(Total for Question 14 = 14 marks)

TOTAL FOR PAPER = 120 MARKS