Surname	Other n	ames
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry		
Paper: 2C		
Paper: 2C Sample Assessment Mat Time: 1 hour	erial	Paper Reference 4CH0/2C

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided

 there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

S41647A

Turn over >

PEARSON

ot fully	[222] Rn neon 86	131 Xe xenon 54	84 Nystor 36	5 ₹ §2	20 Ne 10	4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0
orted but n	[210] A4 asterne 85	127 - 53	80 tronde 35	35.5 CC anoma 17	19 90000		7
Elements with atomic numbers 112-116 have been reported but not fully authenticated	[209]	128 Te relicion 52	79 Se setnum 34	32 s 16	16 0.00 8		9
rs 112-116 ha authenticated	209 Bi 833	122 Sb 51	75 As arsence 33	31 P Prospherus 15	N Introper		22
omic number	207 Pb 882	911 80 80	73 Ge çemanum 32	28 2 28	50 gg 0		4
ents with abor	204 T1 hailum 81	115 Indum 49	70 88 Ga 31	27 All alummum 13	5 10 1		ဗ
Elem	201 Hg necury 80	112 Gd 48	85 2 58			•	
Rg Rg monigenum	197 800 79	108 Ag 47	63.5 coppe				
Ds bernathr 110	195 Pt paleur 78	106 Pd Pd Paladum 46	59 764 28				
[268] Mt retrienum 109	192 F reum 77	103 Rh tradum 45	59 000 000 000 000 000 000 000 000 000 00				
Hs rassum 108	190 Os 20 20 76	Ru ruthensum 44	56 8		Key relative atomic mass atomic symbol atomic (proton) number		
[264] Bh bannur 107	186 Re renum 75	[98] Tc kethetun 43	Mn Manganese 25				
\$9 \$9 \$980000000000000000000000000000000	184 W Iurgeren 74	96 No responent	52 Cr chromum 24				
[262] Db ocnum	181 Ta teneum 73	93 Nb netturn 41	51 Variation 23				
[261] ************************************	178 HH 172	91 Zr rrctonum 40	48 Ti 1180.00°		relative atomic (
[227] Ac*	139 La* entherum 57	89 ➤ * × 39	45 Sc scandum 21	•	hearth and the second s	:	
[226] Ra (honum	137 Ba banda 56	88 Sr strontum 38	Ca cecum 20	Ng magnetum 12	98 88e 4		7
-	133 Cs 55	85 Rb maritim 37	39 7 × potassium 19	23 Na 11	7⊒ ₂ €		

* The Lanthanides (atomic numbers 58-71) and the Actinides(atomic numbers 90-103) have been omitted.

Cu and Cl have not been rounded to the nearest whole number.

Answer ALL questions.	
1 Lithium sulfate (Li ₂ SO ₄) is used in some medicines. The presence of lithium sulfate in a medicine can be shown by two tests.	
(a) A flame test can be used to show that the medicine contains lithium ions.	
State the colour that lithium ions produce in a flame.	
Red	**********
(b) A sample of a medicine containing lithium sulfate is dissolved in water.	
(i) Describe how you would test the solution for the presence of sulfate ions.	
+ Ba(12	March Committee
t HCI or HNO3	
white precipitate formed.	
(ii) Write a chemical equation for the reaction occurring in (b)(i). Bacl2 + Li ₂ SO ₄ \rightarrow BaSO ₄ + 2LiC1	
•	* *******
(Total for Question 1 = 6 marks)	
	i

2 Ethanol can be manufactured by two different methods. The table gives some information about these two methods.

	Raw material	Quality of ethanol produced
Method A	crude oil	pure
Method B	sugar cane	impure

(a) In method A, ethanol is formed in the final step.

)	Identify the 1	two compounds	that react together to I	form ethanol.
---	----------------	---------------	--------------------------	---------------

(2)

~	1 1
1	LI.
1	T 4

(ii) State two conditions used in this reaction.

300°C/60-70 atm/phosphoric acid

(b) The equation for the reaction that occurs in method B is

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

(i) Name the compound with the formula $C_6H_{12}O_6$.

(1)

zlucoze

(ii) Identify the main impurity in the ethanol formed in this reaction.

(1)

water? (02.

\mathcal{Q} (c) Some of the ethanol produced by method B is converted into ethene by heating with a catalyst.	ng it
(I) Name the catalyst used in this reaction.	
	(1)
aluminum oxide	
(ii) Name the type of reaction.	
	(1)
dehydrahm	
(iii) Write the chemical equation for this reaction.	
	(1)
C2H50H > C2H4 + H20	
(d) Some of the ethanol produced by method B is used as a fuel. Balance the chemical equation for the complete combustion of ethanol.	
$C_2H_5OH + 3_0O_2 \rightarrow 2_0CO_2 + 3_0H_2O$	(1)
(Total for Question 2 = 10 m	narks)

3 Marga	ret goes on holiday to the seaside.
	otices some iron railings on the beach that are often in contact with the ter. They are very rusty.
The iro	on railings in front of her hotel, some distance from the sea, are much less rusty.
Marga	ret predicts that seawater makes iron rust faster than rain water.
(a) De	escribe an experiment that Margaret could carry out to test her prediction.
	, (5)
e Se	et up lubes contouring iron in
ra	invater + in sequenter
· S	et up control tube with iron
+	no water
os C 20	nall mass rail + water
3	eave tubes for same length or
	rine
» M	reasure mass change of now
2 1	epent expt
-6-0-11-0-10-0-11	
(b) Wh	hy is rusting described as an oxidation reaction?
	(1)
3	ains oxygen / loss of electrons.
	·
	(Total for Question 3 = 6 marks)
	·

4 The	gas hydrogen chloride, HC Is paper red.	il, dissolves in water. Th	e solution in water turns blue	<u> </u>
(a) () This solution of hydrog	jen chloride in water co	ntains two ions.	
	Give the formula of ea	ch ion.		
	H +	and	CI	(2)
(b) H		dissolves in methylben	gen chloride in water? zene. This solution has no	(1)
cl	student sets up two test t iloride in water and the ot ethylbenzene.	ubes, one containing a ther containing a solution	solution of hydrogen on of hydrogen chloride in	
Н	e adds a piece of magnesi	um ribbon to each test	tube.	
C	ompare the results that he	would observe in both	test tubes.	(3)
in	methyl be	nrere =	no reaction	
in	water =	· fizzing.		
		· My dis	appears	
			vam.	
	O SANCTONICAL STRUCTURE AND ADMINISTRATION OF THE ADMINISTRATION O			A. Carlotte Co.
	etati Dummanidi ikki a katika ji ana haka.			
			(Total for Question 4 = 6 ma	arks)

- 5 Polymers can be classified as addition polymers or condensation polymers.
 - (a) An addition polymer can be formed from the monomer C₃H₆
 - (i) Name this monomer and the addition polymer it forms.

(1)

Monomer Propere

Polymer polypropere

(ii) Explain why there are problems with the disposal of addition polymers.

(2)

· not biodegradable

· shony C-C bonds

(b) Superglues are liquid adhesives that easily form addition polymers, giving a solid that sticks objects together firmly. The repeat unit of a superglue polymer is shown below.

Draw the structure of the monomer used to make this polymer.

(1)

$$H$$
 CN
 $C = C$
 H $COOCH3$

(c) Nylon is an example of a condensation polymer.							
Describe one difference between a condensation polymer and an addition polymer.							
· addition = 1 type of moronur reads							
with itself.							
condensation: two different mononers.							
or addition: only one product former.							
(Total for Question 5 = 6 marks)							
cond: another product formed, e.g. H20							
or HCI.							

- **6** Potassium chloride is a soluble salt. It can be prepared by reacting together solutions of potassium hydroxide and hydrochloric acid.
 - (a) A student did a titration to find the volume of hydrochloric acid needed to react with 25.0 cm³ of potassium hydroxide solution, KOH.

Exactly 25.0 cm³ of potassium hydroxide solution and a few drops of methyl orange indicator were added to a conical flask.

Hydrochloric acid was then added until a colour change was seen.

(i) State the type of reaction occurring between potassium hydroxide and hydrochloric acid.

(1)

Neuhalisatin

(ii) Write a chemical equation for this reaction.

(1)

KOH + HCI -> KCI + H20

(iii) State the final colour of methyl orange in the titration.

(1)

org orange

(iv) The diagrams show the readings on the burette at the start and at the end of a titration.

Use these diagrams to complete the table, entering all values to the nearest $0.05~\text{cm}^3$.

(3)

Burette reading at end in cm ³	28.75
Burette reading at start in cm ³	2.20
Volume of acid added in cm ³	26.55

 ${\cal G}$ (b) Another student did the titration and recorded these results.

Burette reading at end in cm ³	27.35	28.50	27.30	29.15
Burette reading at start in cm ³	0.20	1.80	1.20	2.65
Volume of acid added in cm ³	27.15	26.70	26.10	26.50
Titration results to be used (✓)		1		/

(i) Concordant results are those that differ from each other by 0.20 cm³ or less.
 Identify the concordant results by placing ticks (✓) in the table as shown.

(1)

(ii) Use your ticked results to calculate the average volume of acid added.

(2)

Average volume = 26 · 60 cm³

(c) A student was asked to suggest a method of obtaining pure, dry crystals of potassium chloride from the dilute solution of potassium chloride formed in the titration.
This is her suggested method.
 Pour the neutral potassium chloride solution from the conical flask into an evaporating basin.
 Heat the solution until it has been bubbling for a few minutes.
 Stop heating and leave it until crystals start to form.
Pour the liquid away so the crystals are left behind.
 Scrape the crystals onto some blotting paper and to dry them.
Identify two problems with the student's method. For each problem, suggest an improvement to the method to overcome the problem.
You may assume that the student is working safely.
(4)
Problem 1 Sol. contaminated with indicator
o sol. hected for too long
Improvement repeat titration with no indicator o evapourate until crystalisation point
Problem 2 crystals lost when Sol-powed off * blodting may not day crystals Improvement filter place in warm place

(d) In another titration, some potassium hydroxide solution was neutralised by sulfuric acid. The equation for the reaction is

$$2\mathsf{KOH} \,+\, \mathsf{H}_2\mathsf{SO}_4 \,\to\, \mathsf{K}_2\mathsf{SO}_4 \,+\, 2\mathsf{H}_2\mathsf{O}$$

A 25.0 cm³ sample of 0.200 mol/dm³ potassium hydroxide was neutralised by 28.40 cm³ of sulfuric acid.

(i) Calculate the amount, in moles, of potassium hydroxide used.

$$\frac{25 \times 0.2}{1000} = 0.005 \text{ mol}$$
 (2)

(ii) Calculate the amount, in moles, of sulfuric acid used.

$$\frac{6.005}{2} = 6.0025$$

(iii) Calculate the concentration, in mol/dm³, of the sulfuric acid.

(Total for Question 6 = 18 marks)

7 Lansfordite is the common name for a form of hydrated magnesium carbonate, MgCO₃.XH₂O.

This formula shows that lansfordite contains water of crystallisation. When a sample of lansfordite is heated gently, the water of crystallisation is given off and eventually anhydrous magnesium carbonate is left.

A teacher gave 5.0 g samples of powdered lansfordite to some students and told each student to heat the sample, then to let it cool and reweigh it.

The students heated the samples for different times. The teacher recorded their results in a table.

Length of time heated in min	0.0	1.0	3.0	3.5	4.0	4.5	6.0
Mass of sample after heating in g	5.0	4.4	3.3	3.0	2.7	2.4	2.4

(a) Plot a graph of these results on the grid. The last two results have been plotted for you.

Draw a straight line of best fit through the points you have plotted.

(3)

(b) Use your graph to predict the mass of a sample after heating for 2.0 minutes.

(1)

3.8

(c) Suggest why the masses of the samples after heating for 4.5 minutes and after heating for 6.0 minutes were the same.

(1)

reaction complet

(d) The teacher told one of the students that the amount of hydrated salt in a sample of lansfordite was 0.030 mol, and that the amount of water lost on heating was 0.15 mol.

Calculate the value of x in the formula $MgCO_3.xH_2O$

(1)

$$\frac{0.03}{0.15} = 5$$

(e) When anhydrous magnesium carbonate is heated strongly it decomposes. The equation for the reaction is:

$$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$

Calculate the volume, in dm³, of carbon dioxide formed when 0.030 mol of anhydrous magnesium carbonate is completely decomposed.

(You may assume that the molar volume of a gas is 24 dm³)

(2)

(Total for Question 7 = 8 marks)

TOTAL FOR PAPER = 60 MARKS