Surname	Oth	ner names
dexcel IGCSE	Centre Number	Candidate Number
Chemistry	У	
Unit: 4CH0 Paper: 2C		
Unit: 4CH0 Paper: 2C Wednesday 15 June 2011 Time: 1 hour	– Morning	Paper Reference 4CH0/2C

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

edexcel

advancing learning, changing lives

P38732A

©2011 Edexcel Limited. 1/1/1/1/1/1/

	0	Heitum Heitum	Neon 10 10 Argon	Krypton 36	Xe Xenon	Radon Res		
	7		Fluorine 9 S.55 Chorine					
	ø		Orygen B 822 Suffur					
	S		Nitrogen 7 31 Phosphorus					
	4		S Carbon S S S S S S S S S S S S S S S S S S S	73 Germanlum 32	et 22년 8	Pb Lead		
	ო		BBron Boron 5 27 All Atumhilium	-				
ш				Zn Znc 30	Cadmium 68 Line	Hg Mercury 80		
TABL				Copper 29				
RIODIC				28 Z Z 82	Pd Palledium 46	Platinum 78		
THE PERIODIC TABLE				Cobatt				
-				8 G 5 8	ш			s so so mbar
	Group	Hydrogen		Manganese 25				Key Relative atomic mass Symbol Name Atomic number
				S2 Chromium 24	2			
Control of the Contro				51 Vanadium 23		-		
				Titanium 22				
				Scandium 21	Yttrium 739	139 Lanthanum 57	Actinium 89	
	8		Be Beryffium 4 4 4 Mg Mg Mgmestium					
	Τ.	99200	Lithium 3 3 3 3 8 Sodium Sodium	39 X Potassium 19	Rubidium 37	Catesium S5	Fr Francium 87	
		Period 1	N 69	4	2	ø	7	

2

Turn over >

Answer ALL ques	tions.
A small piece of potassium is added to water.	
The list below shows some statements.	
Only four of these statements describe what happens w	hen potassium reacts with water.
Place a cross (\boxtimes) in the box next to each of the four co	prrect statements.
potassium oxide solution is formed	
fizzing occurs	
potassium sinks to the bottom of the water	
potassium moves around	
potassium melts	
bubbles of oxygen gas are produced	
a lilac flame is seen	
potassium reacts to form an acidic solution	
	(Total for Question 1 = 4 marks)

ammonia c	hlorine	haematite	iron	sodium hydroxide
Give the name of				
(a) a solid that conducts ele				(1)
1101				
(b) a metal ore.	natit	-P_		(1)
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(c) a substance formed in the	he Haber p	rocess.		(1)
a	mmon	ń٩		
(d) a substance used to mal	ce soap.			
	. \.	in h	100:) (1)
		ium hy) MUNI	0
(e) a substance used to male	ke fertiliser	S.		(1)
	an	nmomia	•	
			(Total for	Question 2 = 5 marks)
			(Total tol	Question 2 5 marks)

P 3 8 7 3 2 A 0 4 2 0

BLANK PAGE

5

Turn over ▶

3 The photograph shows the planet Venus.

Although Venus is similar in size to the Earth, it is very different in other ways.

The temperature at the surface of Venus is about $470\,^{\circ}\text{C}$. The atmospheric pressure is 90 times that of the Earth.

The clouds in the atmosphere of Venus are made up of droplets of sulfuric acid.

The table lists some properties of metals that could be used to make a space probe to land on Venus.

Metal	Melting point in °C	Relative density	Reaction with sulfuric acid
copper	1083	8.9	no reaction
lead	328	11.3	no reaction
magnesium	650	1.7	fizzes vigorously
nickel	1453	8.9	fizzes slowly
titanium	1675	4.5	no reaction
zinc	420	7.1	fizzes quite vigorously

The probe needs to be launched with enough energy to escape the Earth's gravity. To make this easier, the mass of the probe needs to be as low as possible. The probe also needs to withstand the conditions on the surface of Venus.
Use the information in the table to answer parts (a) to (c).
(a) (i) Which metal in the table could be used to make a probe with the lowest density?
(1)
May resium
(ii) Why would this metal be unsuitable for making a probe to land on Venus?
(1)
would nearl with acid (Dissolve in
H250,)
(b) Very small amounts of lead can be used in electrical circuits.
Why would lead not be suitable for use in the electrical circuits of a probe to land on Venus?
low melting point
(c) Choose a metal from the table that would be the most suitable for making a probe to land on Venus. Give two reasons for your choice. (3) Metal Titanium
Reasons
1 low density
2 high melting point.
3 loes not react with t12504. (Total for Question 3 = 6 marks)

4	Here are some statements about the compound ethene.	
	• ethene has the displayed formula H H H	
	 ethene is a gas at room temperature ethene burns with a smoky flame ethene is unsaturated ethene is insoluble in water ethene can be prepared from ethanol ethene is used to make the polymer poly(ethene) 	
	(a) (i) State why ethene is described as unsaturated.	,
	Contains a double book	
	Contains a double bond (does not combain the max of H bis	(g) ·
	(ii) Describe a chemical test to show that ethene is an alkene.	2)
	Test	
	Bromine (w. Ner) Result Luns colourless.	***************************************
	Result	
	turns colourless.	

(b) (i)	Complete the following equation that represents the preparation of ethene from
9	ethanol

$$C_2H_5OH \rightarrow C_2H_4 + H_2O$$
 (1)

(ii) What is the name given to this type of reaction?

(1)

dehydration

(c) Complete the equation to show the formation of poly(ethene) from ethene.

reject in before brocket. (Total for Question 4 = 7 marks)

5 When soap is shaken with water, a lather forms. A lather is a collection of small bubbles that form on the surface of the water.

Very little soap is needed to form a lather with pure water.

Water that needs a much larger quantity of soap to form a lather is called hard water.

Water becomes hard when certain compounds are dissolved in it.

A student carried out an experiment to find out which compounds make water hard.

This is the method she used.

- Equal amounts of five different compounds were dissolved in equal volumes of pure water in separate test tubes.
- Soap solution was added to each test tube, one drop at a time. One drop of soap solution has a volume of 0.05 cm³.
- The test tubes were shaken after each addition of soap solution. Soap solution was added drop by drop until a lather formed on shaking.
- The volume of soap solution needed to form a lather was recorded.
- The experiment was repeated three times with each compound.
- Pure water was also tested in the same way.

Her results are shown in the table:

	Volume of soap	solution needed to for	form a lather in cm ²		
Compound	Experiment 1	Experiment 2	Experiment 3		
sodium chloride	0.10	0.15	0.10		
magnesium chloride	1.60	1.70	1.65		
calcium chloride	2.15	2.30	2.25		
potassium chloride	0.10	0.05	0.10		
iron(II) chloride	1.95	430	1.90		
pure water	0.10	0.10	0.10		

(a) Name two compounds that made the water hard.	(2)
MgC12 and FeC12	
(b) Why did the student carry out the experiment three times with each compou	nd?
01.1.1.	(1)
Check reliability.	
(c) (i) Circle the anomalous result in the table.	
	(1)
(ii) What should the student have done after she identified this anomalous r	
Repeat	(1)
or ignore	
at 19hove	
(d) Place a cross () in one box next to the name of the apparatus that the stude should use to add the soap solution.	ent
should use to add the soap solution.	(1)
beaker	
burette	
measuring cylinder	
pipette	
(e) Calculate the average (mean) volume of soap solution needed to form a lather	r with
the magnesium chloride solution. Give your answer to two decimal places.	(2)
(1.6 + 1.7 + 1.65)	Nor
2	
3	65
Average (mean) =	cm ³
(Total for Question 5	= 8 marks)

6 Diamond and graphite are two naturally-occurring forms of carbon.

The diagrams below show the arrangement of the carbon atoms in diamond and in graphite. The black dots (*) represent carbon atoms.

Diamond	Graphite

(a) Name the type of structure in diamond and explain, in terms of its bonding, why diamond has a high melting point.

Count covalent

(4)

· Contains many

nany strong

of energy to

break

(b) Explain, in terms of its structure, why graphite can act as a lubricant.

171

· Weak (

n layers

layers

each ofte

6 (c) The structure of graphite has one feature in common with that of metals. This feature allows graphite to conduct electricity. Suggest what this feature is and why it allows graphite to conduct electricity.
Relocatised electrons which more
(d) In 1985, a new form of carbon was discovered. It was called buckminsterfullerene
after the architect Buckminster Fuller, who designed buildings with complex geometric shapes.
Buckminsterfullerene (C_{60}) has a simple molecular structure containing 60 carbon atoms per molecule. It looks a little bit like a football.
Suggest why buckminsterfullerene has a much lower melting point than diamond.
· Not a giant structure
· Not a giant structure · weak intermolecular forces of athaction between molecules
between molecules

(Total for Question 6 = 10 marks)

7 Sodium azide (NaN_3) is a stable compound at room temperature but decomposes when heated to 300 °C. The equation for the decomposition is:

$$2NaN_3(s) \ \rightarrow \ 2Na(l) \ + \ 3N_2(g)$$

Sodium azide is used to produce nitrogen gas to inflate car airbags.

If a car is involved in a collision, the sodium azide decomposes.

The nitrogen gas is produced very rapidly and the airbag inflates almost immediately.

(a) (i) A fully-inflated airbag has a total volume of 108 dm³.
 Calculate the amount of nitrogen, in moles, in a fully-inflated airbag.
 [You should assume that the volume of one mole of nitrogen inside the airbag is 24 dm³]

$$moles = \frac{\text{rol}}{24}$$

$$= \frac{108}{24}$$

Amount of nitrogen = 4.5 mo

(ii) Use your answer to (a)(i) to calculate the mass, in grams, of sodium azide required to produce 108 dm³ of nitrogen.

Mass ? 3N2 moles 3x65/ 4.5

Mass of sodium azide required = 195 g

(3)

(1)

(1)

(b) The airbag also contains potassium nitrate. This reacts with sodium formed in the decomposition of sodium azide. The equation for the reaction is:

$$10Na(1) + 2KNO_3(s) \rightarrow K_2O(s) + 5Na_2O(s) + N_2(g)$$

 Suggest one reason why the makers of the airbag might want this reaction to occur.

Removes sodium (produces more N2)

(ii) The airbag also contains silicon dioxide (SiO₂) which reacts with the oxides produced in the reaction above. This forms a glassy solid which seals all the products into the airbag.

The glassy solid contains potassium silicate (K₂SiO₃).

Construct an equation for the formation of potassium silicate from potassium oxide. **Include state symbols**.

K2O(s)+ SO2(s)→ K2SiO3(s)

\$ (c)	Another use of sodium azide is to make lead(II) azide, which can be used as a detonator for explosives. Lead(II) azide has the formula of Pb(N ₃) ₂ Lead(II) azide can be made by the following reaction:	
	STATE OF THE PROPERTY OF THE P	
	$Pb(NO_3)_2(aq) + 2NaN_3(aq) \rightarrow Pb(N_3)_2(s) + 2NaNO_3(aq)$	
	(i) What name is given to this type of reaction?	(1)
	Precipitation	
	(ii) What method would you use to remove the lead(II) azide from the final reac	tion
	mixture?	(1)
	filteration	V=2
	(Total for Question $7 = 9$	marks)

P 3 8 7 3 2 A 0 1 6 2 0

8 The following verse is about water (H ₂ O) and dilute sulfuric acid (H ₂ SO ₄).	3		
Johnny was a chemist's son			
But Johnny is no more			
What Johnny thought was H₂O			
Was H₂SO₄			
(a) Johnny looked at a beaker containing sulfuric acid and thought that it was water then drank the liquid.	Не		
Suggest why it is possible to mistake sulfuric acid for water.			
It is colourless : eyet 'clear'	(1)		
(b) Anhydrous copper(II) sulfate changes from white to blue when added to dilute sulfuric acid. Suggest why.			
sulfuric acid contains water	(1)		
(c) Sulfuric acid is manufactured by the contact process.			
One stage of this process involves the reaction of sulfur dioxide with oxygen.			
$2 SO_2 + O_2 \iff 2 SO_3$			
State the conditions used in this stage of the process.	(3)		
Pressure (in atmospheres)			
l atm			
Temperature (in °C)			
350-550			
Catalyst Vanaduum oxide			

(d) 10.0 cm³ of a concentrated solution of sulfuric acid was carefully diluted with water. More water was then added until the final volume of the solution was 1.00 dm³ (1000 cm³).

In an experiment, a student found that $25.0~\rm cm^3$ of the diluted sulfuric acid reacted with $30.00~\rm cm^3$ of sodium hydroxide solution.

The concentration of the sodium hydroxide solution was 0.200 mol/dm³.

The equation for the reaction is:

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

 (i) Calculate the amount, in moles, of sodium hydroxide in 30.00 cm³ of a solution of concentration 0.200 mol/dm³.

moles = cxd = 0.2 x 30/

Amount of sodium hydroxide = $\frac{0.006}{0.000}$ mol

(2)

(1)

(ii) Using your answer to (d)(i), calculate the amount, in moles, of sulfuric acid in 25.0 cm³ of the diluted acid.

c mot

6.006 = 0.003 × 1000

Amount of sulfuric acid in 25.0 cm³ = $\frac{0.0000}{0.0000}$ mol

(iii) Using your answer to (d)(ii), calculate the concentration, in mol/dm^3 , of the diluted sulfuric acid.

(2)

Concentration of the diluted sulfuric acid = 0 · 12 mol/dm³

(iv) Using your answer to (d)(iii), calculate the concentration, in mol/dm³, of the original, concentrated sulfuric acid.

(1)

Concentration of the original, concentrated acid = 12 mol/dm³

(Total for Question 8 = 11 marks)

(TOTAL FOR PAPER = 60 MARKS)

BLANK PAGE

20

