Write your name here		
Surname	Ot	her names
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Paper: 2CR	y	
Monday 10 June 2013 – A Time: 1 hour	fternoon	Paper Reference 4CH0/2CR
You must have: Ruler Calculator		Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

Ц	Ţ
=	1
	j
F	_
C)
=	-
	2
C	
_	
α	
Ц	J
۵	_
Ц	J
Т	200
F	=

Helium 2

0

9

S

က

Group

N

Period

N

က

1 H Hydrogen

BBG-0 State of the control	Be											=	12	4	16	<u>\$</u>	50
Sample S	-											m	ပ	z	0	u.	Ne
Scandium Tilanium Vanadium Tilanium Tilanium	malliam											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
Alianium Alianium	4											2	9		80	6	2
Mathematical Mat	24											27	28	31	35	35.5	40
Marchinium Scandium Scandium Substitution	Ma											₹	Ö	۵	S	ਹ	Ā
SC Till V Cr Mn Fe Co Ni Cu Zn Ga Ga AS SS Br Po Po Sc Till V Cr Mn Fe Co Ni Cu Zn Ga AS SS Br Bromine 21 22 23 24 25 25 27 28 29 30 31 32 38 Se Br Bromine 39 33 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 45 45 47 48 47 48 47 48 47 48 47 48 47 48 49 50 50 51 52 50 50 51 52 51	ignesiun 12	F										Atuminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
Scandium Titanium Vandium Cr Mn Fe Co date of the country of	40	45	48	15	52	55	99	59	29	63.5	65	20	73	75	62	80	84
Scandium Titanium Vanadium Chromium Anganese Iron Cobatt Nicket Copper Zinc Gallium Germanium Arsenic Selenium Bromine Brom Bromune Bromine Bromine Bromine Bromine Bromine Bromine Bromine Bromine Brom Bromune Bromine Bromine Bromine	Ca	S		>	ర	M	F	රි	ž	D.	Zu	Ga	Ge	As	Se	ä	궃
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 89 91 93 101 103 106 106 112 115 115 119 122 128 127 Y Zr Nbobum Mobbdenum TC Rubenium Rhodium Pbd Ag Cd In Sn TP TP TP TP Ag Ag Cd In Antimony Tellurum Rodium Rodium </td <td>Calcium</td> <td>Scandium</td> <td></td> <td>Vanadium</td> <td>Chromium</td> <td>Manganese</td> <td>Lou</td> <td>Cobalt</td> <td>Nickel</td> <td>Copper</td> <td>Zinc</td> <td>Gallium</td> <td>Germanium</td> <td>Arsenic</td> <td>Selenium</td> <td>Bromine</td> <td>Krypton</td>	Calcium	Scandium		Vanadium	Chromium	Manganese	Lou	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
89 91 93 96 99 101 103 106 115 115 119 122 128 127 Y Zr Nb Mob comm TC Rub million TC Rub million Rhodium pallactium Silver silve	8	21		23	24	52	8	27	28	53	30	31	32	33	8	35	36
Y Zr Nb Mo TC Ru Rh odium Pd Ag Cd In Sn SD Te I 39 40 41 42 43 46 47 48 49 50 51 52 53 139 179 181 184 186 180 195 197 201 204 207 209 210 210 Lantalum Tantalum Tantalum Transitum Renium Piditium Piditium Piditium Agoid Mercury Trialium Pobnium Astatine 227 72 72 80 81 79 80 81 84 85 Actinum Actinum Actinum Piditium	88	88	16	83	95	66	101	103	106	108	112	115	119	122	128	127	131
139 41 42 43 44 45 46 40 77 48 49 50 51 52 53 139 179 181 184 186 180 192 195 197 201 204 207 209 210 210 Landhum Tandalum Tandalum Tandalum Tomium Indifum Platinum Platinum Platinum Platinum Astatine Astatine 227 72 72 72 81 80 81 Poholum Astatine ACA Academium	Š	>	Zr	Š	Mo	Tc	2	뜐	Pd	Ag	3	드	S	Sp	Te	_	Xe
39 40 41 42 43 44 45 45 46 47 48 49 50 51 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
139 179 181 184 186 190 192 195 197 201 204 207 203 210 <td>88</td> <td>38</td> <td>40</td> <td>4</td> <td>42</td> <td>43</td> <td>4</td> <td>45</td> <td>46</td> <td>47</td> <td>48</td> <td>49</td> <td>25</td> <td>51</td> <td>52</td> <td>53</td> <td>54</td>	88	38	40	4	42	43	4	45	46	47	48	49	25	51	52	53	54
La Hf Ta W Re OS Ir Pt Au Hg Ti Pb Bismuth Poonlum Aslatine 57 73 74 75 76 77 78 79 80 81 82 83 84 85 Acinium	137	139	179	181	191	186	190	192	195	197	201	204	207	508	210	210	222
Lanthanum Hathium Translum Translum Translum Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine 227 73 74 75 77 78 79 80 81 82 83 84 85 AC AC Actinium Actiniu	Ba	La	Ī	Les Control	>	Re	ő	_	ă	Au	무	F	P	ē	Po	¥	몺
57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 227 AC Actinium	Barium	Lanthanum	Hatnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	98	57	72	22	74	75	76	77	78	79	80	81	82	83	\$	82	98
	525	722															
_	Ra	Ac															
	Radium	Actinium															

Key

Relative atomic mass Symbol Name Atomic number

2

	Answer ALL questions.	
1	Use the Periodic Table on page 2 to help you answer this question.	
	Give the name or symbol of	
	(a) the element in group 3 and period 4.	
	Ga	(1)
	(b) an element in period 3 that is a good conductor of electricity.	(1)
	Nu, Mg, Al	(1)
	(c) the element in group 7 that is the most reactive.	(4)
	F	(1)
	(d) the element in group 5 that is present in a molecule of ammonia.	(4)
	Ν	(1)
	(e) an element with an atom containing 8 electrons in its outer shell.	(e)
	Ne, Ar, Kr, Xe, Rn	(1)
	(Total for Question 1 = 5 m	

- 2 (a) The list shows some techniques used to separate mixtures.
 - A crystallisation
 - **B** filtration
 - **c** fractional distillation
 - D paper chromatography
 - **E** simple distillation

Complete the table to show the best method of obtaining each substance from the mixture.

In each case, choose one of the letters A, B, C, D or E. Each letter may be used once, more than once or not at all.

(4)

Substance	Mixture	Letter
sand	sand and water	В
solid copper(II) sulfate	aqueous copper(II) sulfate	A
red food dye	mixture of food dyes	D
kerosene	crude oil	C

(b) Gold occurs in ores, which are mixtures of gold and other substances. Several elements and compounds are used in the extraction of gold from its ores.

Each box below represents the substances present in one part of the extraction process.

Classify the contents of each box as a compound, an element or a mixture by writing your choice below each box.

(3)

	Au	NaCN	Au
	NaCN	NaCN	(H ₂ O)
	\bigcirc	NaCN	Au
	H_2O	NaCN	(H ₂ O)
Compound, element or mixture	Mix	Com	Ele

(Total for Question 2 = 7 marks)

3 A student added some pieces of iron to a boiling tube containing dilute hydrochloric acid. She observed fizzing and the formation of a solution, X.
(a) Identify the gas that causes the fizzing and describe a test for it.
(2)
Gas H ₂
Test use lit splint to see it it pops
*
(b) Solution X contains chloride ions.
 The student confirmed this by adding some silver nitrate solution. She observed a white precipitate of silver chloride.
Give the formula of the white precipitate, and name the other solution she should have added before the silver nitrate solution.
Formula of white precipitate Felly AyCl
Other solution HNO3
(ii) Complete the word equation for the reaction in this test.
(1)
iron chloride + silver nitrate → silver chloride + 1000 chloride
(c) Solution X also contains ions of iron. The student thought that these ions had the formula Fe^{2+} or Fe^{3+} .
What reagent should she add to decide whether solution X contains Fe ²⁺ or Fe ³⁺ ions?
State the result of the test in each case. (3)
Reagent NaOH (My)
Result with Fe ²⁺ ions Green freig
Result with Fe3+ ions Brown preip
(Total for Question 3 = 8 marks)

4	A teacher added some of the Group 1 elements to separate samples of water.	2
	(a) State two observations that could be made when a small piece of sodium is added to a large trough containing water.	
	\wedge	(2)
1	o fizziny	
	* Moves	
2	· disappears	
	· nelts.	
	(b) In another experiment she added a small piece of a different Group 1 element and noticed that the reaction was less vigorous.	
	Which element did she add in this experiment?	(6)
		(1)
	L,	
	(c) In another experiment she added a small piece of potassium to a large trough containing water. This time she observed a lilac flame.	
	(i) Identify the gas that burned.	103
		(1)
	H ₂	
	(ii) Give the formula of the ion that caused the flame to be lilac.	(1)
	K+	

4	(d)	When the Group 1 elements react with water, each of their atoms loses an electron
,		from its outer shell. For sodium and potassium, these processes can be represented
		by the equations

- Na \rightarrow Na⁺ + e⁻
- $K \rightarrow K^+ + e^-$

Explain, by referring to the electronic configurations of sodium and potassium, why potassium is more reactive than sodium.

(4)

 ъ	Na 15	2,8,1					
 9	Kis	2,8,8,					
o	Outer	electron	1057	from	k is		
	hurte	r from	nue	leus.			
cg.	less	atracked	bi	m	Mein.		••••••
				(Total	for Question	4 = 9 marks	5)

- 5 Fractional distillation and cracking are important steps in processing crude oil.
 - (a) Place ticks (\checkmark) in the columns to show which statements apply to each step. You may place a tick in one column, in both columns or in neither column.

The first one has been done for you.

(5)

Statement	Fractional distillation	Cracking
Crude oil is heated	✓	
A catalyst may be used		/
Alkenes are formed		
Decomposition reactions occur		$\sqrt{}$
Fuels are obtained	✓	/
Separation is the main purpose	✓	

- (b) The formula CH₃CH₂CH₂CH₂CH₃ represents one of the compounds in crude oil.
 - (i) Give the molecular formula of this compound.

(1)

(,H,

(ii) Give the displayed formula of this compound.

(1)

(iii) Give the empirical formula of this compound.

(1)

CsHn

(iv) Give the name of this compound.

(1)

Pentane

(v) Give the general formula of the homologous series that contains this compound.

(1)

Ca Hansa

- (c) The products of the complete combustion of hydrocarbons are carbon dioxide and water.
 - (i) Balance the equation to show the complete combustion of ethene (C_2H_4) .

(2)

$$C_2H_4 + ... 3 O_2 \rightarrow ... Z CO_2 + ... Z H_2O$$

(ii) Draw a dot and cross diagram to show the bonding in an ethene molecule. Show only the outer electrons in each atom.

(2)

5	(d) Ethanol can be manufact reaction is	ured by the hydration of ethene. The equation for this
		$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$
	(i) Identify the catalyst a	nd state the temperature used in this process.

Catalyst H3 P0 4

Temperature 300°C

(ii) A 20 mol sample of ethanol was produced using this reaction.

Deduce the amount, in moles, of ethene needed and the volume, in dm³, that this amount of ethene would occupy at room temperature and pressure.

Assume that all of the ethene is converted into ethanol and that the molar volume of ethene is 24 dm³ at rtp.

(3)

(2)

Amount of ethene 20

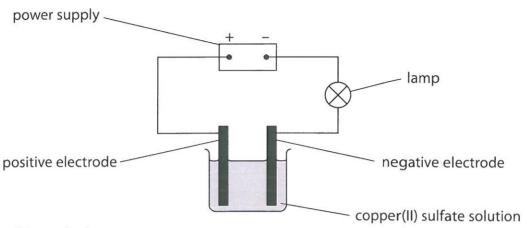
... mo

Volume of ethene

20x24

Volume = 480 dm³

(Total for Question 5 = 19 marks)


10

BLANK PAGE

6 Most experiments involving electrolysis use inert electrodes, which do not take part in the reactions. However, in some experiments the electrodes do take part in the reactions.

A student investigates the electrolysis of copper(II) sulfate solution using copper electrodes which do take part in the reaction. She uses this apparatus.

She uses this method.

- weigh two clean strips of copper
- use one strip as the positive electrode and the other as the negative electrode
- after electrolysis wash the strips of copper with ethanol (a liquid that boils at 78°C)
- dry the strips of copper and reweigh them

The ionic half-equations for the reactions at the electrodes are

Positive electrode

$$Cu(s) - 2e^- \rightarrow Cu^{2+}(ag)$$

Negative electrode
$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

(a) Suggest why the copper strips would dry more quickly when washed with ethanol rather than with water.

(1)

lower boiling point (then water)

(b) The student's results are shown in the table.

	Positive electrode	Negative electrode
Mass of electrode before electrolysis in g	8.78	7.95
Mass of electrode after electrolysis in g	8.46	8.25

The table shows that the decrease in mass of the positive electrode was 0.32 g.

(i) Calculate the increase in mass, in grams, of the negative electrode.

(1)

Increase in mass = 6.30 g

(ii) The ionic half-equations show that the increase in mass of the negative electrode should be the same as the decrease in mass of the positive electrode.

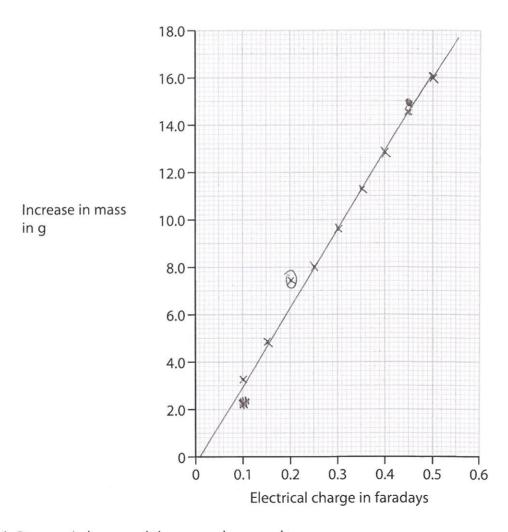
Suggest two reasons why the increase in mass of the negative electrode in the student's experiment was less than expected.

							(2)
1	some	Cu	bib	ndt	Shuk	ho	electrode
	Couth	. `					
2	easi hu	٩	electrode	(m	auce.		
	1				7	***************************************	

(c) Another student investigated the effect of changing the electrical charge, in faradays, passed during the electrolysis.

He wanted to find how this affected the increase in mass of the negative electrode.

One faraday is the electrical charge of one mole of electrons.


His results are shown in the table.

Experiment	1	2	3	4	5	6	7	8	9
Electrical charge in faradays	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
Increase in mass in g	3.20	4.80	7.40	8.00	9.60	11.20	12.80	14.40	16.00

(i) On the grid, plot a graph of increase in mass against electrical charge.

Draw a straight line of best fit. Start your line at the origin (0,0).

(3)

(ii) Draw a circle around the anomalous result.

(1)

6	(iii) Suggest why the straight line should go through the origin. no charge - no mass.	(1)			
	(iv) Explain why the graph shows that the increase in mass is directly proportional to the electrical charge passed.	(1)			
	line is straight + goes through the origin.				
	(v) Use your graph to estimate the increase in mass, in grams, of the copper electrical that would be produced by passing an electrical charge of 0.55 faradays.	ode (2)			
	Increase in mass = $177 \cdot 4$	g			
-	(Total for Question 6 = 12 ma	rks)			
	TOTAL FOR PAPER = 60 MARKS				

BLANK PAGE