

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE in Chemistry (4CH0 2C)

Pearson Edexcel Level 1/Level 2 Certificate in Chemistry (KCH0 2C)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CH0_2C_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	M1 (X) – (stirring/glass/ plastic) rod	Accept stirrer Reject metal	2
	M2 (Y) – Bunsen (burner)		
(b) (i)	C (solvent)		1
(ii)	B (solution)		1
(c) (i)	2		1
(ii)	3		1
(d)	evaporated / went into the air	accept boils accept turns into vapour	1

Question number	Answer	Notes	Marks
2 (a)	M1 iron reacted with oxygen	Accept iron combined/bonded with oxygen Accept iron oxide formed Accept iron is oxidised Ignore iron uses oxygen Ignore iron rusts Ignore references to reacting with water	2
	M2 <u>all oxygen</u> is reacted / (all) <u>oxygen</u> used up / no <u>oxygen</u> left	Accept references to 20% or 20cm³ of the air which is oxygen used up/reacted Reject all iron used up Ignore reaction has finished	
(b)	M1 iron(II) sulfate / iron sulfateM2 hydrogen	reject any other oxidation state	2
	, a. 350		

(c)	M1 (Fe ²⁺) – green precipitate/solid	ignore shades reject other colours eg blue- green	2
	M2 (Fe ³⁺) – brown precipitate/solid	accept red-brown / orange brown Ignore rust coloured	
		reject red on its own	
		Allow 1 mark if both answers correct but reversed	
		Ignore references to colours of solutions	

Question number	Answer	Notes	Marks
3 (a)		Ignore name and formula of compound	1
(i)	Na / sodium / Mg / magnesium	Accept aluminium If both name and formula	
(ii)	Si / silicon / P / phosphorus / S / sulfur / Cl / chlorine	given both must be correct	1
		If both name and formula given both must be correct	
(b) (i)		Allow electrons	3
(b) (i)	[Mg] ²⁺ [:Cl _x] [*Cl:]	Allow any combination of dots and	3
	M1 correct electronic configuration for magnesium ion and correct charge on ion	crosses Allow 0 or 8 electrons in outer shell	
	M2 correct electronic configuration for both chloride ions		
	M3 correct charges on both chloride ions	Ma in I	
(ii)	M1 electrostatic attraction/forces between ions	M3 indep	2
	M2 of opposite charge		
		accept positive	

		and pagative	
		and negative ions	
		accept cations	
		and anions	
		M2 dep on M1	
		Accept	
		attraction/forc	
		es between	_
(iii)	M1 attraction (between ions) is strong	oppositely charged ions	3
	accident (between lons) is strong	for 1 mark	
		only	
		Reject	
	M2 lots of ions (in structure) / giant	references to	
	structure / lattice / lots of/many bonds	atoms/molecul	
	M2 (the supferior) let effether 10 10	es/IMF for M1	
	M3 (therefore) lot of (thermal/heat) energy required to overcome	and M2	
	attraction / to break down the lattice		
	detraction y to break down the lattice	Accept strong	
		(ionic)	
		bonding/strong	
		(ionic) bonds	
		Accept lot of	
		(thermal/heat)	
		<u>energy</u>	
		required to	
		break (ionic)	
		bonds	
		If any	
		reference to	
		attraction	
		between	
		atoms/molecul	
		es/electrons scores 0/3	
		If any	
		reference to	
		covalent	
		bonding/covale	
		nt	
		structure/IMF	
(c)		scores 0/3 Correct answer	2
(c)		with or without	۷
		working scores	
		2 marks	
		2 IIIdIKS	

M1 mol Al = 20/3 (= 6.67)		
M2 mass Al = (answer to M1 x 27) = 180 (g) OR M1 3 faradays give 1 mol OR 27 g / 30 faradays give 10 mol OR 270 g	M2 CQ on M1 eg 540 scores 1 mark 6.67 gives 180(.09) scores 2 marks 6.7 gives 180.9 = 181 scores 2 marks 6.66 gives 179.82 scores M2 only Accept any	
M2 20 faradays gives 180 (g)	number of sig fig except 1	

Question number	Answer	Notes	Marks
4 (a)	$CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$	Ignore state symbols	1
(b) (i)	to increase the rate of <u>reaction</u>	ignore references to dissolving/solubillty	1
(b) (ii)	(copper(II) oxide/it) stops disappearing/ stays as a solid / forms as a solid (at the bottom of the beaker)	Accept stops dissolving / forms a suspension /forms a residue Accept when copper oxide remains/settles in the beaker Allow liquid goes cloudy/black ignore references to stops reacting ignore references to bubbling	1
(iii)	a drop of solution forms crystals when removed (and cooled)	Accept when crystals start to form/start to be seen Reject if all water evaporated	1
(iv)	(stage) 3	accept any reference to <u>first</u> filtration stage	1

Question number	Answer	Notes	Mar
5 (a) (i)	M1 (compounds/molecules with the) same molecular formula /same number of each type of atom	Ignore references to chemical/general/empirical formula If use elements/atoms instead of compounds/molecules can score M2 only Allow reference to isomers in question ie have same number of carbon and hydrogen (atoms as each other)	2
	M2 but different displayed formula / structural formula / structures / arrangement of atoms	Ignore atoms in different order Ignore references to stereoisomerism	
(ii)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accept structure of trans but-2-ene Ignore bond angles	1
(iii)	M1 (Reagent) – bromine (water)		3
	M2 (But-1-ene) – goes (from orange) to colourless	accept decolourised Ignore clear/discolours	
	M3 (cyclobutane) – no change (unless UV light present)	accept stays orange ignore no reaction	
		If start with bromine (water) in presence of UV light then scores 0/3	

I				I
(b)	(i)	H H H H H-C-C-C-C-H H OH H H	Allow -O-H and -OH but not -HO	1
		OR		
		H H H H H-C-C-C-C-H OHH H H		
	(ii)	$ \begin{pmatrix} H & H \\ I & I \\ C & C \end{pmatrix} $ $ \begin{pmatrix} I & I \\ C_2H_5 & H \end{pmatrix}_{n} $		2
		M1 correct formula of repeat unit (with carbon to carbon single bond)	Accept displayed C₂H₅	
			Accept C ₂ H ₅ on either C Allow if more than one monomer correctly joined together	
		M2 brackets <u>and</u> continuation bonds <u>and</u> n	Accept n anywhere after brackets but not before	
			M2 dep on M1or near miss	

Question number	Answer	Notes	Marks
6 (a)	titration / volumetric analysis		1
(b)	C (25 cm³ pipette)		1
(c)	M1 (before) - yellow		2
	M2 (after) - orange	accept pink / red and combinations with orange Allow 1 mark if correct colours reversed	
(d)	after adding acid before adding acid 2.75 volume added 20.85 M1 23.60 M2 2.75 M3 20.85	If readings are correct but in the wrong order, award 1 mark for M1 and M2 M3 CQ on (M1 – M2)	3
(e) (i)	22.90 22.60 22.45 22.55 ✓ ✓ ✓		1
(ii)	M1 $(22.60 + 22.45 + 22.55) \div 3$ M2 $22.53 \text{ (cm}^3\text{)}$	Correct final answer with no working scores (2) Accept 22.53 with 3 recurring	2
		If no results ticked in (i), then only use of two or three concordant titres can score in (ii)	
		If only one result ticked, then no marks can be scored in (ii) Otherwise, both marks CQ on ticked results in (e)(i)	
		Answer with zero as 2nd dp does not need trailing zero	

	Answers obtained by averaging other titre values do require answers to 2 dp	

Question number	Answer	Notes	Marks
7 (a)	(refinery) gases		1
(b)	bitumen		1
(c) (i)	$C_{18}H_{38} \rightarrow C_{8}H_{18} + C_{10}H_{20}$		1
(c) (i)	OR		_
	$C_{18}H_{38} \rightarrow C_8H_{18} + 2C_5H_{10}$		
	OR		
	$C_{18}H_{38} \rightarrow C_8H_{18} + 5C_2H_4$		
(ii)	Any two from:		
	M1 over/greater supply of long chain hydrocarbons/molecules/ heavy/heavier fractions / OWTTE	Accept reverse argument eg not enough short chain hydrocarbons	2
	M2 high(er) demand/more use for short-chain/small hydrocarbons/ light/lighter fractions/ OWTTE		
	M3 reference to a use eg the alkenes produced can be used to make polymers/plastics / eg the short-chain (saturated) hydrocarbons used as fuels	Accept specific alkene and product eg ethene to make poly(ethene)/ethanol/alcohol Accept answers in terms of gasoline/petrol / fuel (for cars)	
(4)	CH 1 91/0 200 1 0H 0	Allow multiples	
(d)	$C_8H_{18} + 81/2O_2 \rightarrow 8CO + 9H_2O$	Allow multiples	2
	M1 correct formula for CO		
	M2 correct balanced equation	Accept balanced equations	
	M2 dep on M1	containing CO as well as C and/or CO ₂ eg C ₈ H ₁₈ + 6.5O ₂ \rightarrow 4CO + 4C + 9H ₂ O	

Question number	Answer	Notes	Marks
8 (a)	M1 (mol NaHCO ₃ =) 10.5/84 or 0.125 M2 (so mass CO ₂ = 0.0625 x 44 =) 2.8 (g)	correct final answer with no working scores 2 accept 2.75 M2 CQ on M1	2
	OR		
	M1 168 g NaHCO₃ give 44 g CO₂		
	M2 10.5 g NaHCO₃ give 2.75 g CO₂		
(b)	M1 (mol CO ₂ =) 2.75 ÷ 44 or 0.0625	correct final answer with no working scores 2 if answer is incorrect mark CQ to (a)	2
		CO h- M1	
	M2 (0.0625 x 24000) = 1500 (cm ³)	CQ answer to M1 accept 1.5(00) dm ³	