Surname	Othe	er names			
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number	Candidate Number			
Chemistry Unit: KCH0/4CH0 Paper: 2C					
Unit: KCH0/4CH0					
Unit: KCH0/4CH0		Paper Reference KCH0/2C 4CH0/2C			

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⋈. If you change
 your mind about an answer, put a line through the box ⋈ and then mark
 your new answer with a cross ⋈.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 5 7 2 9 A 0 1 2 0

Turn over ▶

PEARSON

THE PERIODIC TABLE

0	4
7	
9	
2	
4	
က	
Group	
2	
-	D.
	Period

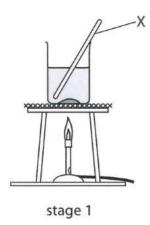
drogen	
	drogen

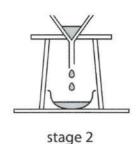
Helium 2

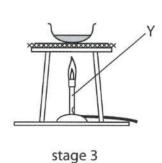
7	6											11	12	4	91	19	50
=	B											В	O	z	0	LL.	Ne
Thiom	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
3	4											S	9	,	8	6	10
23	24											27	28	31	32	35.5	40
Na	Ma											8	Ö	۵	S	ರ	Ā
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	26	59	59	63.5	65	70	73	75	79	90	8
¥	Ca	Sc	F	>	ర	M	Fe	රි	Z	J	Zu	Ga	g	As	Se	ă	챃
tassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc 30	Gallium	Germanium	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
8	8	5 68	16	83	96	8	101	103	106	108	112	115	119	122	128	127	131
4	i i	>	7	2	M	۲ ا	ā	뜐	Ь	A	2		S	S	Ę.	_	Xe
mpipiqu	Strontium	Yttrinm	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Ę	Antimony	Tellurium	lodine	Xenon
37	38	38	40	4	42	43	4	45	46	47	48	49	20	51	52	23	24
133	137	139	179	181	184	186	190	192	195	197	201	204	207	209	210	210	222
S	Ba	<u>e</u>	Ì	E	3	Re	SO	_	ā	An	웃	F	Pb	Ö	Ъ	A	윤
aesium	Barinm	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astaline	Radon
55	95	57	72	22	42	22	9/	77	78	79	80	18	82	83	8	88	96
223	226	227															
ř	Ra	Ac															
ancium	Radium	Actinium															

Key

Retaive atomic mass
Symbol
Name
Atomic number


P 4 5 7 2 9 A 0 2 2 0


9


Answer ALL questions.

The diagram shows the apparatus a student uses to separate a mixture of salt and sand.

She adds the mixture to water in a beaker and then carries out the three stages shown.

(a) Give the names of the pieces of apparatus labelled X and Y.

(2)

0.00

1.04

rod

(b) (i) A liquid that dissolves substances is a

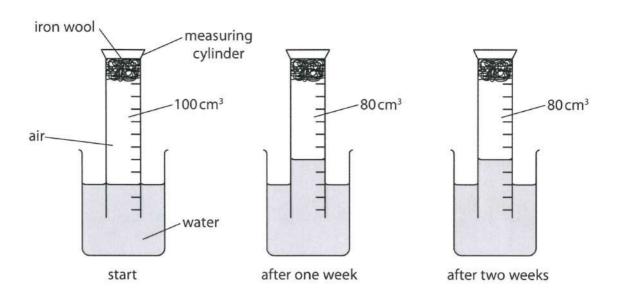
(1)

- A solute
- solution
- solvent
- **D** suspension
- (ii) The clear liquid that forms in stage 1 is a

- A solute
- solution
- solvent
- **D** suspension

(1)

BLANK PAGE



(1)	ι.
(1)	
(1)	 1 -,
	(1)

(Total for Question 1 = 7 marks)

(2)

2 The apparatus in the diagram was set up to demonstrate the rusting of iron.

(a) One week after the start of the experiment the volume of gas in the measuring cylinder has decreased.

After two weeks there is no further decrease in volume of gas in the measuring cylinder.

Explain these observations.

· Iron reacted with oxygen

· All oxygen reacted

(b) Iron reacts with dilute sulfuric acid. The chemical equation for this reaction is

Fe +
$$H_2SO_4 \rightarrow FeSO_4 + H_2$$

Complete the word equation for the reaction.

(2)

Iron + sulfuric acid → Iron (11) Sulfate + Hydrager

2.11

(c) Aqueous sodium hydroxide can be used to distinguish between solutions containing iron(II) ions (Fe²⁺) and iron(III) ions (Fe³⁺).

State the observation made when aqueous sodium hydroxide is added separately to each solution.

(2)

2.45

Fe2+(ag) Green ppt

Fe3+(aq) Brown ppt

(Total for Question 2 = 6 marks)

3 The diagram shows the elements in Period 3 of the Periodic Table.

Na Mg Al Si P S Cl Ar

(a) (i) Identify an element in Period 3 that forms a basic oxide.

(1)

Nalma

(ii) Identify an element in Period 3 that forms an acidic oxide.

(1)

Silp / SICL

(b) Magnesium and chlorine react together to form magnesium chloride, a compound with ionic bonding.

The equation for the reaction is

$$Mg + Cl_2 \rightarrow MgCl_2$$

(i) Complete the dot and cross diagram to show the arrangement of the outer electrons in the magnesium and chloride ions formed.

Show the charge on each ion.

(3)

$$Mg_{\times}^{\times} + : Ci:Ci: \longrightarrow \begin{bmatrix} Mg \end{bmatrix} \begin{bmatrix} : Ci: \end{bmatrix} \begin{bmatrix} \times Ci: \end{bmatrix}$$

(ii) State what is meant by the term ionic bonding.

(2)

1.41

1,40

2.38

Electrostatic attraction between oppositely charged ions

	(iii) Explain why magnesium chloride has a high melting	g point.
•	· Strong attraction	(3)
	Giant ionic lattice	
	. Lots at energy required to o	vercome attackion

(c) Aluminium is extracted from aluminium oxide using electrolysis.

Calculate the mass, in grams, of aluminium formed when a charge of 20 faradays is passed through aluminium oxide dissolved in molten cryolite.

The ionic half-equation for the formation of aluminium is

$$\Lambda(A1) = \frac{20}{3}$$
 $= 6.67 \text{ moi}$
(2)

$$M(A1) = 6.67 \times 27$$

= 180q

mass of aluminium = 180 g

(Total for Question 3 = 12 marks)

1.42

- 4 Crystals of copper(II) nitrate, Cu(NO₃)₂, can be prepared by reacting solid copper(II) oxide, CuO, with dilute nitric acid.
 - (a) Write a chemical equation for this reaction.

(1)

CUO + 2HNO3 -> CU(NO3)2 + H20

(b) A student is given a sample of copper(II) oxide containing small amounts of insoluble impurities.

The passage is from her notebook and describes the method she uses to prepare some pure, dry crystals of copper(II) nitrate from her sample of copper(II) oxide.

- Stage 1: Place 50 cm³ of dilute nitric acid into a beaker and warm.
- Stage 2: Add the impure copper(II) oxide a little at a time and stir, until it is in excess.
- Stage 3: Filter the mixture.
- Stage 4: Heat the filtrate until the crystallisation point is reached.
- Stage 5: Allow the filtrate to cool.
- Stage 6: Filter off the crystals and dry with filter paper.
 - (i) Why is the acid warmed in stage 1?

(1)

Invense rate at reaction

(ii) How will the student know when the copper(II) oxide is in excess in stage 2?

(1)

copper (11) Oxide Stops disappearing

2.330

2.33C

1 1000					(1)	
A arop	64	Souron	forms	crystals	When	2
removed						
) In which stage a	are the ins	oluble impuritie	es removed?			

(Total for Question 4 = 5 marks)

But-1-ene is a member of the homologous series of alkenes.

The displayed formula of but-1-ene is

The saturated compound cyclobutane is an isomer of but-1-ene.

The displayed formula of cyclobutane is

(a) (i) State what is meant by the term isomers.

· Same molecular formula but different sinuctural

(ii) Draw the displayed formula of another isomer of but-1-ene.

$$H - C - C = \dot{C} - \dot{C} - H$$
 OR $C = C$ OR $H - \dot{C} - H$
 $H - \dot{C} - H$

(iii) Describe a test that would distinguish between but-1-ene and cyclobutane.

(3)

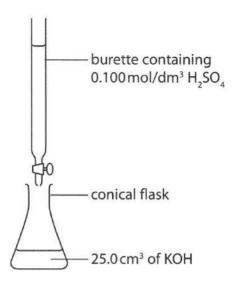
4.28

- (b) Using your knowledge of the reactions of ethene, complete the two chemical equations to show the formula of the organic product.
 - (i) The reaction between but-1-ene and steam.

(1)

4.30C

4.41


$$CH_{2} = CHCH_{2}CH_{3} + H_{2}O \rightarrow U - C - C - C - C - H_{2}$$

(ii) The polymerisation of but-1-ene.

(2)

(Total for Question 5 = 9 marks)

6 This apparatus can be used in a method to find the volume of sulfuric acid required to neutralise a solution of potassium hydroxide (KOH).

(a) What name is given to this method?

(1)

Titration

(b) Which piece of apparatus should be used to measure the 25.0 cm³ of KOH?

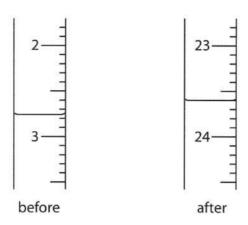
(1)

- ☐ A beaker
- B measuring cylinder

colour after KOH is neutralised.....

- C pipette
- D syringe
- (c) State the colours that are seen if methyl orange is used as the indicator.

(2)


colour before adding the acid

orange

2.28

2.33C

(d) A student carries out the experiment. His burette readings are shown in the diagram.

Use the diagram to complete the table. Give the readings to the nearest 0.05 cm³.

Burette reading after adding the acid

23.60

Burette reading before adding the acid

2.75

Volume in cm³ of acid added

20.85

(e) A second student did the experiment four times, using a different solution of potassium hydroxide. The table shows her results.

Volume in cm³ of acid added	22.90	22.60	22.45	22.55
Concordant results (✓)		/	/	/

Concordant results are those within 0.20 cm³ of one another.

- (i) Place ticks in the table to indicate which results are concordant with one another.
- (1)

(2)

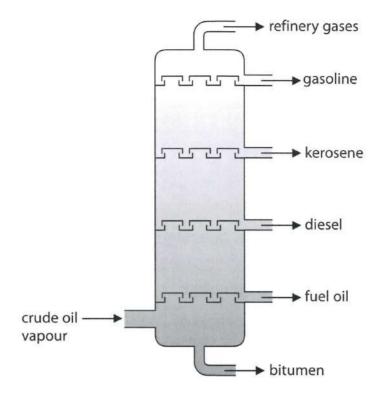
(3)

2.330

2.33C

2.336

(ii) Use your ticked results to calculate the average (mean) volume of acid added.


$$= \frac{22.60+22.45+22.55}{3}$$

$$= 22.53$$

average (mean) volume of acid = $\frac{22 \cdot 53}{\text{cm}^3}$ cm³

(Total for Question 6 = 10 marks)

7 Crude oil is a complex mixture of organic compounds called hydrocarbons. It is separated into fractions using a fractionating tower.

(a) Which fraction has the lowest boiling point?

Gases

(b) Which fraction is the most viscous?

Bitumen

(1)

(1)

16

4.10

(c) (i) Some fractions containing long-chain hydrocarbons are cracked. The cracking of octadecane, (C₁₈H₃₈), produces octane, (C₈H₁₈), and one other product.

Write a chemical equation for this cracking reaction.

(1)

1.25

4.18

1.25

C18 M38 -> C8 M18 + C10 M20

(ii) Explain why it is important to crack long-chain hydrocarbon fractions.

(2)

· Over supply of long-chain hydrocarbons
· Higher demand for short-chain hydrocarbons
· Vused as fuels/polymers/plastics
Short-chain hydrocarbons

(d) Octane is one of the hydrocarbons in the petrol used in cars.

The equation for the complete combustion of octane is

$$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$$

The incomplete combustion of octane produces a poisonous gas that reduces the capacity of blood to carry oxygen.

Write a chemical equation for this incomplete combustion of octane.

(2)

C8 418 + 8202 -> 800 + 9450

(Total for Question 7 = 7 marks)

- 8 This is a recipe for making Irish soda bread.
 - add 170 g of wholemeal flour, 170 g of plain flour, 10 g of salt and 10.5 g of bicarbonate of soda (sodium hydrogencarbonate, NaHCO₃) to a bowl and stir
 - pour in 290 cm³ of buttermilk and stir quickly to form a soft dough
 - · form the dough into a round ball and slightly flatten it
 - cut a cross in the top and bake for 30 minutes in an oven at 200°C

When sodium hydrogencarbonate is heated, it forms carbon dioxide gas.

$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$$

(a) Calculate the mass, in grams, of carbon dioxide that would be produced by completely decomposing 10.5 g of sodium hydrogencarbonate.

[M, of NaHCO₂ = 84]

$$n(NaMCO_3) = \frac{10.5}{84}$$
 Mass(coz) = $\frac{0.125}{2} \times 44$ (2)
= 0.125mol = 2.89

mass of carbon dioxide = $\frac{2 \cdot 8}{2 \cdot 8}$

(b) Use your answer from part (a) to calculate the volume, in cm³, at room temperature and pressure, of carbon dioxide that would be produced by completely decomposing 10.5 g of sodium hydrogencarbonate.

Assume one mole of carbon dioxide has a volume of 24000 cm³ at room temperature and pressure.

$$n(co_2) = \frac{2.75}{44}$$

$$= 0.0625mol$$
(2)

volume of carbon dioxide = _____cm__cm

(Total for Question 8 = 4 marks)

TOTAL FOR PAPER = 60 MARKS

1.35C

BLANK PAGE

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

