Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 4CHO_2CR_1706_MS
All the material in this publication is copyright
(c) Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	C (proton) The only correct answer is C A is not correct because X is not an electron B is not correct because X is not an ion D is not correct because X is not a neutron	1	
(ii)	C (9) The only correct answer is C A is not correct because the sum of the number of protons and neutrons is 9 not 4 B is not correct because the sum of the number of protons and neutrons is 9 not 5 D is not correct because the sum of the number of protons and neutrons is 9 not 5	ACCEPT Be	
(iii)		1	

(b)	M1 (same)	number of protons	ACCEPT same number of electrons IGNORE same atomic number	2
	M2 (different)	number of neutrons	IGNORE relative atomic mass IGNORE different mass number	
		Total	$\mathbf{5}$	

Question number	Answer	Notes	Marks
2 (a)	M1 bubbles (of gas)/ effervescence	ACCEPT fizzing ACCEPT magnesium dissolves	2
M2 magnesium disappears / magnesium gets smaller			
ALLOW solid for			
magnesium			
IGNORE reference			
to movement			
(b)	increases	IGNORE reference to temperature change	ACCEPT gets hotter
(c)	magnesium + (dilute) sulfuric acid \rightarrow magnesium sulfate + hydrogen	ALLOW chemical equation If both word and chemical equation given mark word equation only	Total

Question number	Answer	Notes	Marks
3 (a)	M1 (A) hydrochloric acid / $\mathrm{HCl}(\mathrm{aq})$ M2 (B) calcium carbonate / marble / limestone / chalk / CaCO_{3}	If both name and formula given, both must be correct. State symbol not needed, but penalise if incorrect If both name and formula given, both must be correct	2
(b)	(gas) syringe / downward delivery (in air)	ACCEPT upward displacement of air	1
(c) (i) (ii)	orange / yellow M1 (name) carbonic acid M2 (formula) $\mathrm{H}_{2} \mathrm{CO}_{3}$	ACCEPT yellow-orange I GNORE shades or qualifiers, e.g. light ALLOW as the only product of an equation	1 2
	Total		6

Question number	Answer	Notes	Marks
4 (a) (b) (i)	hydrogen AND carbon (a mixture of) compounds/hydrocarbons/substances with similar boiling points	ACCEPT in either order ACCEPT C and H if both names and symbols given, mark name only REJ ECT elements REJ ECT same boiling points ALLOW references to condense at similar temperatures ALLOW references to similar carbon chain length I GNORE references to other physical properties e.g. viscosity I GNORE references to similar chemical properties	1

Question	Answer	Notes	Marks
(b) (ii)	M1 vaporise/heat the crude oil M2 pass vapour/gas into a (fractionating) column/tower M3 vapours/gases/fractions/hydrocarbons/ substances condense at different heights/ levels/points	ALLOW boil I GNORE distil I GNORE references to temperature ALLOW collected for condense ALLOW lower boiling point/more volatile substances condense/collected higher up AND higher boiling point/less volatile substances condense/collected lower down ALLOW shorter chain substances condense/collected higher up AND longer chain substances condense/collected lower down I GNORE reference to melting points If reference to cracking only M1 can be scored	3

Question		Answer	Notes	marks
4 (c)	(i)	bitumen		1
	(ii)	gasoline		1
(d) (i)	carbon monoxide	ACCEPT CO If both name and formula given, mark name only	1	
	(ii)	(it is) poisonous / (it is) toxic / (it) reduces the capacity of the blood to carry oxygen	ACCEPT correct references to haemoglobin / carboxyhaemoglobin IGNORE references to suffocation	1

Question number	Answer	Notes	Marks
$5 \text { (a) (i) }$ (ii)	$46.6 \text { (g) }$ as temperature increases, solubility decreases	Ignore trailing zeros e.g. accept 46.60 ACCEPT reverse argument I GNORE any reference to inverse proportionality REJ ECT reference to (direct) proportionality ALLOW references to negative correlation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b)	M1 use a fume cupboard M2 (because) ammonia is toxic/poisonous	ALLOW carry out in a well-ventilated area I GNORE reference to lab coats/goggles/(gas) masks/gloves I GNORE do not inhale fumes I GNORE dangerous/harmful/irritant	2
(c)	water evaporates (more quickly) / ammonia escapes (as it is less soluble in hot water)	ALLOW (ammonia) solution evaporates IGNORE ammonia evaporates	1
(d)	measure the pH (of the solution using universal indicator or pH meter) OR titrate with acid		1
		Total	6

Question number	Answer	Notes	Marks
6 (a)	M1 (method 1) zymase M2 (method 2) phosphoric acid / $\mathrm{H}_{3} \mathrm{PO}_{4}$	ACCEPT yeast If both name and formula given, mark name only	2
(b)	M1 company A chooses method 1/fermentation AND company B chooses method $2 /$ ethene with steam/hydration M2 company A has (access to) a supply of sugar (cane)/glucose M3 company B can obtain ethene from crude oil/an oil refinery M4 company A does not need pure ethanol / company B does need pure ethanol	I GNORE company A only needs a dilute solution of ethanol I GNORE references to batch/continuous processes	4
(c) (i)		M1 one correct repeat unit drawn with continuation bonds e.g. $\text { or }-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ M2 rest of diagram correct ie brackets and balanced using n	2

(ii)			
(iii)		ALLOW n in any position after bracket but not before M2 DEP M1 Crude oil is a finite/limited resource OR ethanol can be made from sugar (cane)/glucose which is a renewable resource	ALLOW crude oil is non-renewable IGNORE reference to high/increasing demand for ethene
			Total

Question number	Answer	Notes	Marks
7 (a)	M1 polystyrene is a better insulator	ALLOW polystyrene is an insulator	2
(b)	M2so less heat (energy)/thermal energy is transferred/lost to the surroundings/atmosphere/airREJ ECT no heat loss to the surroundings		
	$\mathbf{M 2}$ (after) $22.8\left({ }^{\circ} \mathrm{C}\right)$	one mark for correct answers in the wrong order Ignore trailing zeros e.g. accept 18.60	

Question	Answer	Notes	Marks
(c) (ii) (iii)	M1 (sodium hydroxide) expected value $37-38 \mathrm{~cm}^{3}$ M2 (hydrochloric acid) (100 - M1) expected value 63-62 cm^{3} sodium hydroxide (has the greater concentration because) M1 sodium hydroxide and hydrochloric acid react in a $1: 1$ (molar) ratio M2 the volume of sodium hydroxide required is less (than the volume of hydrochloric acid required)	mark CSQ on candidates graph read to nearest gridline ALLOW hydrochloric acid has the lower concentration because the volume of hydrochloric acid required is more (than the volume of sodium hydroxide)	2 2
		Total	12

Question number	Answer	Notes	Marks
8 (a) (i)	M1 0.02350×0.0200 M2 $0.000470 / 4.70 \times 10^{-4}(\mathrm{~mol})$	do not penalise missing trailing zeros 0.0005 scores $1 / 2$ ACCEPT 0.47 for 1 mark Correct answer without working scores 2	2
(ii)	M1 M2 from (i) $\div 0.0250 /(0.000470) \div 0.0250$ M2 $0.0188\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ OR	do not penalise missing trailing zeros ACCEPT any number of sig fig except one	2
	M1 $\frac{\text { M2 from (i) } \times 1000}{25}$	Correct answer without working scores 2	
	M2 $0.0188\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$		
	OR		
	$\text { M1 }(23.5 \div 25.0) \times 0.0200$		
	M2 $0.0188\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$		

8 (b)	M1 heat/boil until crystals form in a sample of solution that has been removed and cooled M2 cool/leave (the solution) until crystals have formed M3 filter (to remove the crystals) AND wash with (a little deionised/distilled) water M4 suitable method of drying the crystals	ACCEPT heat/boil to produce a (hot) saturated/concentrated solution ACCEPT heat/boil until crystals start/begin to form ALLOW (heat/boil to) evaporate some of the water ALLOW heat/boil to crystallisation point I GNORE references to filtering before heating M2 DEP on M1 ACCEPT decant/pour off the liquid/(excess solution) M3 dep on crystals having been formed e.g. place in (warm) oven / leave to dry (in warm place) / use filter paper / use kitchen towel REJ ECT any reference to heating directly with a flame, e.g. with a Bunsen If M1 not scored then award 1 mark out of 4 for leaving the solution until the water evaporates fully OR for evaporating solution to dryness	4
		Total	8

