Write your name here

Surname	Other names				
Pearson Edexcel	Centre Number International GCSE				Candidate Number

Chemistry

Unit: 4CHO
Science (Double Award) 4SC0 Paper: 1CR
Thursday 17 May 2018 - Morning Time: $\mathbf{2}$ hours

You must have:

Total Marks
Ruler
Calculator

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \mathbb{D}. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross \boxtimes.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

$$
0 \quad-\frac{\Phi}{\underline{T}} \frac{\underline{\underline{\underline{1}}} .}{}
$$

$$
\begin{aligned}
& 0 \\
& N
\end{aligned}
$$

$$
0
$$

$$
N
$$

$$
\bullet
$$

in
THE PERIODIC TABLE

Answer ALL questions.

1 The table gives information about some substances.
Complete the table by choosing substances from the box that match the information.
You may use each substance once, more than once, or not at all.
(6)

air	bromine	carbon dioxide	copper
helium	iodine	methane	nitrogen

Information	Substance
a good conductor of electricity	Copper
a noble gas	Helium
a mixture	Air
a liquid at room temperature	Bromine
used in fire extinguishers	Carbon Dioxide
used as a fuel	Methane

2 A sugar cube is placed in a beaker containing water.
The beaker is left until the sugar cube disappears and a sugar solution forms.
The concentration of the solution is the same at the bottom and top of the beaker.

(a) Use the particle theory to explain what happens to the sugar cube to make the concentration of the solution the same at the bottom and top of the beaker.

Water partides collide with the sugar cube, consing sugar partides to dissolve. The sugar particles then spread out until they are evenlydistribated in the water.
\qquad
\qquad
(b) This apparatus is used to obtain pure water from the sugar solution.

(i) What is the name of the process shown in the diagram?A crystallisation
X B distillationC filtrationD sublimation
(ii) Give the name of each piece of apparatus.
p Tripod
Q Gauze
R. Condenser
s. Conics slosh

3 A student uses chromatography to investigate the colourings found in four different fruit drinks, A, B, C and D.

The diagram shows the chromatography paper at the beginning and at the end of the investigation.

(a) State why the student should draw the starting line in pencil.
\qquad
Pencil want dissolve in water.
\qquad
(b) (i) Which drink contains only one colouring?ABC
『 D
(ii) Explain which drink contains the most soluble colouring.
C, as it produced the spot which moved the furthest.
\qquad
\qquad
(iii) Explain which drinks contain the same colouring.
A and C, as they both hove a spot of the
\qquad
\qquad
\qquad

4 (a) Table 1 lists three subatomic particles.
Complete table 1 by giving the relative mass and relative charge of each subatomic particle.
(3)

Subatomic particle	Relative mass	Relative charge
proton	1	+1
neutron	1	0
electron	$\frac{1}{1836}$	-1

(b) Table 2 shows the number of protons, neutrons and electrons in particles P, Q, R, S and T.

Particle	Number of protons	Number of neutrons	Number of electrons
P	11	12	10
Q	8	8	10
R	10	10	10
S	9	10	9
T	12	12	12

Table 2
Use table 2 to answer these questions.
Each particle, P, Q, R, S and T, may be used once, more than once or not at all.
(i) State which particle has the highest mass number.
T
(ii) State which particle contains two electrons in its outer shell.
(iii) State which particle is a negative ion.

Q

(iv) State which particle is an atom of an element in Group 7 of the Periodic Table.
S
(c) Which of these statements is correct for isotopes of the same element?A they have a different atomic numberB they have a different number of electronsC they have the same number of neutrons
$\boxtimes \mathbf{D}$ they have the same number of protons

(Total for Question

5 The diagram shows a section of the Periodic Table.

(a) (i) The elements in the Periodic Table are arranged in order of increasing

A atomic numberB mass numberC neutron numberD relative atomic mass
(ii) Identify the element that is in Period 3 and Group 5 of the Periodic Table.

Phosphorus
(iii) Name two elements in Period 2 that form acidic oxides.

1 \qquad
2 Nitrogen
(iv) Describe the environmental problem that occurs when acidic oxides dissolve in water in the atmosphere.

Acid rain which kills plants and trees.
\qquad
\qquad
\qquad
(b) Magnesium and sulfur react to form an ionic compound.

The equation for this reaction is

$$
M g+S \rightarrow M g S
$$

(i) Write a word equation for this reaction.

Magnesium + Sulfur \rightarrow Magnesium Sulfide
(ii) Describe the changes in electronic configurations when magnesium reacts with sulfur to form the ionic compound MgS.

Show the charges on the ions.
Each Magnesium atom loses two eleetrans to form Mg^{2+}
Each Sulfur atom gains two electrons to form S^{2-}
\qquad
\qquad
\qquad
(iii) Calculate the mass of MgS that forms when 0.30 g of magnesium reacts completely with sulfur.

$$
\begin{gather*}
\mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{MgS} \tag{3}\\
0.30
\end{gather*}
$$

\qquad
M 0.30
0.70.

56

$$
\mathrm{n} 0.0125 \longrightarrow 0.0125
$$

$$
n=\frac{m}{m_{r}} \quad m=n M_{r}
$$

mass of $\mathrm{MgS}=0.70$
(Total for Question 5 = 13 marks)

6 Carbon dioxide gas forms when dilute nitric acid is added to marble chips.
The word equation for the reaction is

$$
\text { calcium carbonate }+ \text { nitric acid } \rightarrow \text { calcium nitrate }+ \text { carbon dioxide }+ \text { water }
$$

(a) Write a chemical equation for the reaction.

$$
\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(b) A student needs to prepare and collect some carbon dioxide gas, using the reaction between marble chips and dilute nitric acid.

The diagram shows how he sets up his apparatus.

(i) State two reasons why the student's set-up is not suitable for collecting carbon dioxide.

1. CO_{2} would escape through the thistle funnel.
\qquad
2. Gees jor is the wrong way up.
\qquad
(ii) The student then sets up his apparatus correctly, but uses excess dilute sulfuric acid instead of dilute nitric acid.

The reaction produces calcium sulfate.
Explain why the reaction stops, even though there are still marble chips and unreacted sulfuric acid in the flask.

Calcium sulfote is insoluble and forms a coating on the marble chips which prevent them from reacting.
(c) Some carbon dioxide is bubbled into distilled water containing universal indicator.

A solution of pH 6 is produced.
This shows that the solution isA weakly alkalineB strongly alkaline
区 C weakly acidicD strongly acidic
(d) Carbon dioxide contains simple molecules.

The atoms in the molecules are joined by covalent bonds.
(i) State what is meant by the term covalent bond.

Gectrostatic
Attraction between a shared pair of electrons and the nuclei of bothe atoms.
\qquad
\qquad
(ii) Explain why carbon dioxide has a low boiling point.

Weak intermolecular forces require little thernd energy to overcome.
\qquad
\qquad
(iii) Complete the diagram, using dots and crosses, to show the arrangement of the electrons in a molecule of carbon dioxide.

Show only the outer shell electrons.

7 Iron is produced in a blast furnace.

(a) Give the common name of the iron ore that contains $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(b) Name the gas that makes up the highest percentage of the waste gases.

Nitrogen
(c) Carbon monoxide is the main reducing agent in the blast furnace.

Explain how the carbon monoxide is formed in the blast furnace.
Carbon reacts with oxygen to form Corban dioxide. Carbon dioxike reacts with carbon to form carbon monoxide.
(d) Write the chemical equation for the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by carbon monoxide.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

8 Crude oil is a mixture of organic compounds.
A teacher uses this apparatus to separate a sample of crude oil into some fractions. She uses a clamp and stand to support the test tube being heated.

(a) (i) State what other piece of apparatus the teacher would need.

Thermometer
(ii) Explain why the test tube is placed in a beaker containing cold water and ice.

To cool the vapours and cause them to condense.
(b) The table shows the range of boiling points for the fractions collected by the teacher.

Fraction	Range of boiling point in ${ }^{\circ} \mathbf{C}$
A	$30-60$
B	$60-100$
C	$100-140$
D	$140-180$

(i) Stater
(i) Identify the fraction that is the least viscous at room temperature.
(ii) Identify the fraction that contains compounds with the smallest molecules.

A
(c) Fraction D contains decane that has this displayed formula.

(i) Determine the molecular formula of decane.
$\mathrm{C}_{10} \mathrm{H}_{22}$
(ii) Give the general formula of the homologous series that includes decane.
$\mathrm{CnH}_{2 n+2}$
(d) $\mathrm{C}_{14} \mathrm{H}_{30}$ is a long chain molecule. It can undergo cracking to give octane, $\mathrm{C}_{8} \mathrm{H}_{18^{\prime}}$ and two molecules of the same alkene.
(i) Write an equation for this cracking process.
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{3} \mathrm{H}_{6}$
(ii) State two conditions used in industry for catalytic cracking.

1 \qquad
$=600-700^{\circ} \mathrm{C}$ \qquad

9 The order of reactivity of metals can be found using different methods.
(a) One method is to add the metals to cold water and to dilute hydrochloric acid.

The table shows the observations made when samples of four metals are added separately to cold water and to dilute hydrochloric acid.

Metal	Observation when added to cold water	Observation when added to dilute hydrochloric acid
magnesium	bubbles produced very slowly	bubbles produced very quickly
platinum		no change
sodium	bubbles produced very quickly	not done
zinc	no change	bubbles produced slowly

(i) State the observation that is made when platinum is added to cold water.

No reaction
(ii) Place the four metals in order of reactivity.
most reactive Sodium
Magnesium
Zinc
least reactive Platinum
(iii) Describe a test to show that the bubbles contain hydrogen gas.

Burns with a pop.
(iv) Write a word equation for the reaction between magnesium and dilute hydrochloric acid.
(1)

Magnesium + Hydrochloric acid \rightarrow Magnesium Chlobere Hydrogen
(v) Suggest why the reaction between sodium and dilute hydrochloric acid is not done.
(1)

If is a violent reaction.
(b) Displacement reactions are another method used to find the order of reactivity of metals.

In an experiment, a piece of zinc metal is placed in a beaker containing copper(II) sulfate solution.

(i) The reaction that occurs shows zinc is more reactive than copper.

State two observations that would be made as the reaction occurs.

1. Pink-brown solid formed
2. Blue solution is decolourised.
(ii) In a second experiment, a piece of copper metal is placed in a beaker containing nickel sulfate solution.

No reaction occurs.
Explain why it is not possible to determine the complete order of reactivity for copper, nickel and zinc from these two experiments.
We don't know whether zine or nickel is more reactive as no experiment was done between a zinc salt and nickel.
(c) The ionic equation for the reaction between zinc and copper(II) sulfate is

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

Explain why this is described as a redox reaction.
Zinc loses electrons, Copper ion gains electrons
Zinc is oxcidised and, copper ion 13 reduced.
\qquad
\qquad
(Total for Question $9=12$ marks)
\qquad

10 The Haber process is used to manufacture ammonia, $\mathrm{NH}_{3^{\prime}}$, from the reaction between nitrogen and gas X.

(a) (i) Explain why nitrogen is described as an element but ammonia is described as a compound.

In Nitrogen all atoms have the Same atomic number.
Ammonia contains two different elements bonded together.
\qquad
(ii) Name gas X and the raw material it is obtained from.
gas X \qquad raw material Natural gas
(iii) The reaction vessel contains solid Y .

Identify solid Y .
Iron
(iv) State the purpose of solid Y .
Catalyst
(b) (i) Name the type of reaction that occurs between ammonia and sulfuric acid.

Neutralisation
(ii) Give the name and formula of the ammonium compound Z.
name Ammonium Sulfate
(2)
formula $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(iii) Describe a test to show that a solid sample of compound Z contains ammonium ions.

Add $\mathrm{NaOH}_{(a a)}$, test gas produced with dompree Litmus paper. Litanus turns blue.
\qquad
\qquad
\qquad
\qquad
(c) Ammonia is an important material in the chemical industry and is often transported as a liquid in sealed containers.

Suggest why it is transported in the containers as a liquid rather than as a gas.
Liquid occupies smaller volume so they con transport mere in the some volume.
\qquad
\qquad
(d) Ammonia is used to produce nitric acid.

The first stage of the process is shown in this equation.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-950 \mathrm{~kJ}
$$

(i) State what is meant by the symbol ΔH.

Enthalpy change
(ii) State why using a lower temperature would produce a greater yield of nitrogen monoxide, NO . [assume the reaction reaches a position of equilibrium]
(iii) State why using a lower pressure would produce a greater yield of nitrogen monoxide, NO.
[assume the reaction reaches a position of equilibrium]
More moles of goes on right hand sike of the equation.
(e) Nitric acid and ammonia are used to produce ammonium nitrate.

Explain why ammonium nitrate is used in agriculture.
It is a fertiliser and therefore increases crop
yield.

BLANK PAGE

11 A student investigates the reaction between lead(II) nitrate solution and potassium chromate solution.
(a) Lead(II) nitrate solution and potassium chromate solution react to form a yellow precipitate of lead(II) chromate and potassium nitrate solution.
(i) Complete the equation by adding the state symbols.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
(ii) Use information from the equation to determine the charge on the chromate ion.
(1)

2-
(b) The student uses this method for her investigation.

- place $5.0 \mathrm{~cm}^{3}$ potassium chromate solution in a test tube standing in a test tube rack
- add $1.0 \mathrm{~cm}^{3}$ lead(II) nitrate solution to the test tube
- allow the precipitate to settle and measure its height
- repeat the method using separate $5.0 \mathrm{~cm}^{3}$ samples of potassium chromate and adding different volumes of lead(II) nitrate solution

These are the student's results.

Volume of lead(II) nitrate solution in $\mathbf{~ m ~}^{\mathbf{3}}$	Height of precipitate in $\mathbf{~ c m}$
1.0	0.3
2.0	0.6
4.0	1.2
6.0	1.8
8.0	2.4
9.0	2.7
11.0	3.0
12.0	3.0
14.0	2.1
16.0	3.0
18.0	3.0

(i) Plot the student's results on the grid.
(ii) Circle the anomalous result on the grid.
(iii) Ignoring the anomalous result, draw a straight line of best fit through the first six points, and another straight line of best fit through the last five points.

Make sure that the two lines cross.

(iv) Use your graph to find the volume of lead(II) nitrate solution that reacts exactly with the $5.0 \mathrm{~cm}^{3}$ of potassium chromate solution.
volume of lead(II) nitrate solution $=$ 10 cm^{3}
(v) Suggest two possible reasons for the anomalous result.
(2)

1 Added too little Lead (II) nitrate

2 Precipitde nut left to settle for long enough
(c) (i) Describe how to obtain a pure, dry sample of solid lead(II) chromate from the test tube at the end of the investigation.
Filter off the precipilite Wash the precipitate with distiller water. Leave to dry.
\qquad
\qquad
\qquad
(ii) Give a test to show that the potassium nitrate solution in the test tube contains potassium ions.
Home test, produces a lilac flame.
\qquad
\qquad
\qquad
(d) The student does a similar experiment to produce a precipitate of lead iodide, $\mathrm{Pbl}_{2^{\prime}}$ using the following reaction.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}
$$

He finds that $5.0 \mathrm{~cm}^{3}$ of $0.90 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{Kl}$ solution reacts with $8.0 \mathrm{~cm}^{3}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution.
Calculate the concentration, in $\mathrm{mol} / \mathrm{dm}^{3}$, of the $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution.
0.28
0.90
2.25
4. 5
$c=\frac{n}{v} \quad n=c v$
concentration of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution $=$ \qquad $\mathrm{mol} / \mathrm{dm}^{3}$
(Total for Question 11 = 18 marks)

TOTAL FOR PAPER $=120$ MARKS

BLANK PAGE

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

