Write your name here

Chemistry

Unit: 4CH0
Paper: 2CR

Wednesday 13 June 2018 - Morning	Paper Reference
Time: $\mathbf{1}$ hour	$\mathbf{4 C H O / 2 C R}$

You must have:
Total Marks
Ruler, calculator

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross \boxtimes.

Information

- The total mark for this paper is 60 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

THE PERIODIC TABLE

	1	2					Group						3	4	5	6	7	0
Period																		
1							1 H Hydrogen 1											$\substack{4 \\ \text { Helium } \\ 2}$
2	7	9											11	12	14			
	$\underset{\substack{\text { Lithium }}}{\mathrm{Li}}$	Be Beryllium 4											$\begin{gathered} \text { B } \\ \text { Boron } \\ 5 \\ \hline \end{gathered}$	Carbon 6	N Nitrogen 7	$\begin{gathered} \mathrm{O} \\ \text { Oxygen } \\ 8 \\ \hline \end{gathered}$	F Fluorine 9	Ne Neon 10
3	23	24											27	28	31	32	35.5	40
	Na Sodium 11	Mg Magnesium 12											Al Aluminium 13	Si Silicon 14	P Phosphorus 15	$\begin{gathered} \text { S } \\ \text { Sulfur } \\ 16 \\ \hline \end{gathered}$	Cl Chlorine 17	Ar Argon 18
4	39	40	45	48	51	52	55	56	59	59	63.5	65	70		75	79	80	84
	$\begin{gathered} \mathrm{K} \\ \text { Potassium } \\ 19 \\ \hline \end{gathered}$	Ca Calcium 20	$\begin{gathered} \text { Sc } \\ \text { Scandium } \\ 21 \\ \hline \end{gathered}$	Ti Titanium 22	V $\underset{2}{\text { Vanadium }}$ 23	Cr Chromium 24	Mn Manganese 25	$\begin{gathered} \text { Fe } \\ \text { Iron } \\ 26 \\ \hline \end{gathered}$	Co Coball 27	Ni Nickel 28	$\begin{gathered} \mathrm{Cu} \\ \text { Copper } \\ 29 \end{gathered}$	$\underset{30}{\mathrm{Zn} \mathrm{Zinc}}$	Ga Gallium 31	Ge Germanium 32	As Arsenic 33	Se $\substack{\text { Selenium } \\ 34}$	$\begin{gathered} \mathrm{Br} \\ \text { Bromine } \\ 35 \\ \hline \end{gathered}$	$\substack{\mathrm{Kr} \\ \text { Krypton } \\ 36}$
5	86	88	89	91	93	96	99	101	103	106	108	112	115	119	122	128	127	131
	Rb Hubidium 37	$\begin{gathered} \mathrm{Sr} \\ \text { Strontium } \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} Y \\ \text { Ytrium } \\ 39 \end{gathered}$	$\begin{gathered} \mathrm{Zr} \\ \text { Zirconium } \\ 40 \end{gathered}$	Nb Niobium 41	Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	Rh Rhodium 45	Pd Palladium 46	Ag Silver 47	Cd Cadmium 48	$\begin{gathered} \text { In } \\ \text { Indium } \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sn } \\ \text { Tin } \\ 50 \end{gathered}$	$\underset{\substack{\text { Antimony } \\ 51}}{\mathrm{Sb}}$	Te Tellurium 52	$\begin{gathered} 1 \\ \text { lodine } \\ 53 \end{gathered}$	$\begin{gathered} \mathrm{Xe} \\ \text { Xenon } \\ 54 \end{gathered}$
6	133	137	139	179	181	184	186	190	192	195	197	201	204	207	209	210	210	222
	$\begin{gathered} \text { Cs } \\ \text { Caesium } \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \text { Barium } \\ 56 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { La } \\ \text { Lanthanum } \\ 57 \\ \hline \end{array}$	$\underset{\substack{\text { Hatnium } \\ 72}}{\mathrm{Hf}}$	Ta $\substack{\text { Tantalum } \\ 73}$	$\underset{\substack{\text { Tungsten } \\ 74}}{\substack{\text { W } \\ \\ \hline}}$	$\underset{\substack{\mathrm{Re} \\ \text { Rhenium } \\ 75}}{\mathrm{Re}}$	$\begin{gathered} \text { Os } \\ \text { Osmium } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ir } \\ \text { Iridium } \\ 77 \\ \hline \end{gathered}$	$\underset{\substack{\text { Platinum } \\ 78}}{\mathrm{Pt}}$	Au Gold 79	$\begin{gathered} \mathrm{Hg} \\ \text { Mercury } \\ 80 \\ \hline \end{gathered}$	Tl Thallium 81	Pb Lead 82	Bi Bismuth 83	$\begin{gathered} \text { Po } \\ \text { Polonium } \\ 84 \\ \hline \end{gathered}$	At Astatine B5	Rn Radon 86
7	223	226	227															
	$\underset{\substack{\text { Francium } \\ 87}}{\mathrm{Fr}}$	Ra Radium 88	\qquad															
Key																		
							Relative ato mass Symbol Name Atomic num											

Answer ALL questions.

1 The table shows some information about five gases.

Gas	Formula of molecule	Boiling point in ${ }^{\circ} \mathbf{C}$
chlorine	Cl_{2}	-35
oxygen	O_{2}	-183
carbon monoxide	CO	-191
nitrogen	N_{2}	-196
hydrogen	H_{2}	-253

Choose gases from the table to answer this question.
You may use each gas once, more than once, or not at all.
(a) Name the gas that is a compound.
(b) Name the gas necessary for rusting to occur.

Oxygen
(c) Name the gas that bleaches moist litmus paper.

Chlorine
(d) Name the gas that has the highest percentage by volume in air.

Nitrogen
(e) Name the gas that has the highest boiling point.
chlorine
(f) Determine the two gases that have the same relative formula mass.

1. Nitrogen
2. Carbon monoxide

2 A student uses this apparatus to study the rate of the reaction between marble chips and dilute hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) (i) Explain what happens to the mass of the flask and contents during the reaction.
(2)

Mass decreases as CO_{2} leaves the flesh.

All the HCl has reacted.
(iii) State how the student would know when the reaction has ended. Mass of the flash and contents reaches a constanta
(b) The student plots her results on a grid.

(i) At which time is the rate of reaction greatest?

】 A 1 minuteB 4 minutesC 6 minutesD 8 minutes
(ii) The student repeats the experiment with the same volume and concentration of acid, but with 15 g of smaller marble chips.

On the grid, sketch the curve you would expect for this experiment.
（c）Explain how decreasing the concentration of the hydrochloric acid affects the rate of reaction．

Refer to particle collision theory in your answer．
Fewer cit partides in the same volume Fewer successful collisions per second． Lower rote of reaction．
\qquad
\qquad
\qquad
（Total for Question $2=10$ marks）

BLANK PAGE

3 A student is provided with a solution of sodium hydroxide, NaOH , and a solution of $0.0200 \mathrm{~mol} / \mathrm{dm}^{3}$ phosphoric(V) acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$

She does a titration to find the volume of the phosphoric(V) acid that reacts with $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide.

This is the student's method.

- add phosphoric (V) acid to a clean burette until it is nearly full
- record the burette reading
- use a measuring cylinder to add $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide to a clean conical flask
- add a few drops of phenolphthalein indicator to the flask
- place the flask on a white tile
- add phosphoric(V) acid from the burette until the indicator changes colour
- record the burette reading
- wash the flask using distilled water and then dry the flask
- repeat the titration
(a) (i) Name a piece of apparatus that would give a more precise measurement of the volume of sodium hydroxide.
Pipette
(ii) Suggest why the student places the flask on a white tile.

To see the colour change more clearly.
(iii) Give the colour change of the phenolphthalein indicator during the titration.
at start Pink
at end Colourless
(iv) The student dries the flask after washing it with distilled water.

Suggest why it is not necessary to dry the flask before repeating the titration.
Water does not affect number of moles of NoM.
\qquad
\qquad
(b) The diagram shows the student's burette readings for her titration, before and after adding the acid.

Use the readings to complete the table, giving all values to the nearest $0.05 \mathrm{~cm}^{3}$.

burette reading after adding the acid	22.80
burette reading before adding the acid	1.45
volume in cm^{3} of acid added	21.35

(c) Another student does the experiment four times.

The table shows his results.

Volume in cm^{3} of acid added	21.80	21.50	21.35	21.40
Concordant results $(\boldsymbol{\checkmark})$				

Concordant results are those within $0.20 \mathrm{~cm}^{3}$ of each other.
(i) Place ticks in the table to show which results are concordant.
(ii) Use the concordant results to calculate the average (mean) volume of acid added.

$$
\begin{equation*}
\frac{21.50+21.35+21.40}{3}=21.42 \tag{2}
\end{equation*}
$$

$$
\text { average volume }=21.42 \quad \mathrm{~cm}^{3}
$$

(d) The titration is repeated many times.

The average result from all these titrations shows that $25.0 \mathrm{~cm}^{3}$ sodium hydroxide reacts with $21.30 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} / \mathrm{dm}^{3}$ phosphoric (V) acid.

The equation for the reaction is

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the concentration, in $\mathrm{mol} / \mathrm{dm}^{3}$, of the sodium hydroxide solution.

$$
\begin{array}{lll}
& \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{a_{3}} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{~V} & 0.0213 & 0.02 \mathrm{~S} \\
\mathrm{C} & 0.02 & 0.0 \mathrm{SI12} \\
n & 4.26 \times 10^{-4} & 1.278 \times 10^{-3} \\
n=\mathrm{CV} \quad C=\frac{n}{V} & \begin{array}{l}
\text { concentration of sodium hydroxide solution }=0.0 \mathrm{SI} \quad \text { (T) } \\
\text { (Total for Question } 3=13 \text { marks) }
\end{array}
\end{array}
$$

4 The box shows the molecular formulae of some organic compounds.

\mathbf{P}			Q		
	CH_{4}		$\mathrm{C}_{2} \mathrm{H}_{4}$		$\mathrm{C}_{2} \mathrm{H}_{6}$
\mathbf{S}					
	$\mathrm{C}_{3} \mathrm{H}_{6}$		$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$		$\mathrm{C}_{4} \mathrm{H}_{8}$

(a) Choose compounds from the box to answer this question.

You may use each compound once, more than once or not at all.
(i) Identify a compound that is not a hydrocarbon.

T

(ii) Identify a compound that has the same empirical formula as its molecular formula.
(b) (i) Draw the displayed formula for compound P.

(ii) Draw the displayed formula for two straight-chain isomers of compound U .

Isomer 1

(c) (i) Compound Q reacts with bromine to form compound T .

Describe the observation that would be made during this reaction.
Bromine changes from red-brown to colourless.
(ii) Suggest how compound R could be converted into compound T .

Rect with Bromine andUVLight.
(d) Compound Q is used as the starting material in the manufacture of polymers such as poly(ethene) and poly(chloroethene).
(i) What type of polymers are poly(ethene) and poly(chloroethene)?

Addition polymers
(ii) Complete the diagram to show the displayed formula of poly(chloroethene).
(2)

(e) Nylon is a polymer formed by a different polymerisation process.
(i) Give the name of this polymerisation process.

Condensation polymerisation
(ii) State a difference between the two polymerisation processes.
(1)

In condensation polymerisation a small molecule is formed. This doesnt hopper in addition polymerisation.

5 This apparatus is called a Hofmann voltameter. It is used to collect the gases produced when an electric current passes through a solution of dilute sulfuric acid.

(a) (i) Name the process that takes place in the Hofmann voltameter.

Electrolysis
(ii) State why zinc should not be used for the electrodes.

Zinc reacts with sulfuric acid.
(b) (i) Describe a test to show that the gas produced at the positive electrode is oxygen.
(1) Glowing splint relights.
(ii) Write an ionic half-equation to represent the reaction that produces hydrogen at the negative electrode.
$\mathrm{ZH}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2}$
(c) An ionic half-equation for the reaction at the positive electrode is

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}
$$

Calculate the maximum volume of oxygen that could be formed at room temperature and pressure (rtp) if a charge of 0.010 faraday is passed through the dilute sulfuric acid. [molar volume of oxygen gas is $24000 \mathrm{~cm}^{3}$ at rtp]
4 Faraday gives $1 \mathrm{md} \mathrm{O}_{2}$
0.010 Faraday gives $0.0025 \mathrm{~mol} \mathrm{O}_{2}$
$0.0025 \times 24000=60 \mathrm{~cm}^{3} \mathrm{O}_{2}$

$$
\text { maximum volume of oxygen }=60 \quad \mathrm{~cm}^{3}
$$

(d) The ionic half-equation for the reaction at the positive electrode is sometimes shown as

$$
4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}
$$

Suggest why this half-equation is not the best way to show the reaction at the positive electrode when an electric current is passed through a solution of dilute sulfuric acid.

Very low concentration of OH^{-}ions present in
Sulfuric acid?.

6 Heptanol and hydrogen are both used as fuels.
(a) A student uses this apparatus to find the heat energy released from the combustion of heptanol.

He uses this formula

$$
Q=m \times 4.18 \times \Delta T
$$

[$Q=$ heat energy released,$\quad m=$ mass of water in $\mathrm{g}, \quad \Delta T=$ change in temperature of water] $1.00 \mathrm{~cm}^{3}$ water has a mass of 1.00 g .
(i) State the measurements that the student needs to record to find a value for the heat energy released.
Volume of wooer heder.
Temperature of water before and after heating.
(ii) The student burns 0.75 g of heptanol and calculates Q to be 19 kJ .

Use this information to calculate the molar enthalpy change, in $\mathrm{kJ} / \mathrm{mol}$, for the combustion of heptanol.
[M_{r} of heptanol $=114$]

$$
\begin{equation*}
n=\frac{m}{M_{r}} \frac{0.75}{114}=6.58 \times 10^{-3} \mathrm{~mol} \tag{3}
\end{equation*}
$$

$\frac{19}{6.58 \times 10^{-3}}=2888 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) The equation for the combustion of hydrogen is

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

(i) This equation shows the reaction, including the covalent bonds in the molecules.

$$
2 \mathrm{H}-\mathrm{H}+\mathrm{O}=\mathrm{O} \rightarrow 2 \mathrm{H}-\mathrm{O}-\mathrm{H}
$$

The table gives the average (mean) bond energies.

Bond	Average bond energy in kJ/mol
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{H}-\mathrm{O}$	464

Use the values in the table to calculate the enthalpy change, ΔH, for the reaction.
Include the sign in your answer.

$$
\begin{align*}
& \sum(\text { bands broken })=2(436)+498 \tag{3}\\
&=1370 \mathrm{~kJ} \\
& \begin{aligned}
\sum(\text { bands formed }) & =4(464) \\
& =1856 \mathrm{~kJ} \\
\Delta H & =1370-1856 \\
& =-486 \mathrm{~kJ}
\end{aligned}
\end{align*}
$$

(ii) Complete the energy level diagram for the reaction between hydrogen and oxygen by showing the reactants and products.

Label the enthalpy change, ΔH, for the reaction.

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

