Please check the examination details below before entering your candidate information

Wednesday 9 January 2019

Chemistry
Unit: 4CH0
Science (Double Award) 4SCO
Paper: 1C
You must have:
Total Marks
Calculator, ruler

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross \boxtimes.

Information

- The total mark for this paper is 120 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end. -

Pearson
THE PERIODIC TABLE

	1	2					Group						3	4	5	6	7	0
Period																		
1							1 H Hydrogen 1											$\substack{4 \\ \text { Helium } \\ 2}$
2	7	9											11	12	14	16	19	20
		Be Beryllium 4											$\begin{gathered} \text { B } \\ \text { Boron } \\ 5 \\ \hline \end{gathered}$	Carbon 6	N Nitrogen 7	$\underset{\substack{\text { Oxygen } \\ 8}}{\mathrm{O}}$	F Fluorine 9	Ne Neon 10
3	23	24													31	32	35.5	40
	Na Sodium 11	Mg Magnesium 12											$\mathbf{A l}$ Aluminium 13	Si Silicon 14		$\begin{gathered} \text { S } \\ \text { Sulfur } \\ 16 \\ \hline \end{gathered}$	$\substack{\text { Climine } \\ \text { Chlo } \\ 17 \\ \hline}$	Ar Argon 18
4	39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	
	Potassium 19	Ca Calcium 20	Sc Scandium 21	$\substack{\mathrm{Ti} \\ \text { Tilanium } \\ 22}$	V Vanadium 23	Cr Chromium 24	Mn Manganese 25	$\begin{gathered} \text { Fe } \\ \text { Iron } \\ 26 \\ \hline \end{gathered}$	Co Cobalt 27	Ni Nickel 28	Cu Copper 29	$\underset{\text { Zinc }}{\mathrm{Zn}}$	Ga Gallium 31	Ge Germanium 32	$\begin{gathered} \text { As } \\ \text { Arsenic } \\ 33 \\ \hline \end{gathered}$	Selenium 34 Se	$\begin{gathered} \mathrm{Br} \\ \text { Bromine } \\ 35 \\ \hline \end{gathered}$	Kr Krypton 36
5	86	88	89	91	93	96	99	101	103	106	108	112	115	119	122	128	127	131
	Rb Aubidium 37	Sr $\substack{\text { Strontium } \\ 38}$	Y Ytrium 39	$\underset{\substack{\mathrm{Zr} \\ \mathrm{Zr} \\ 40 \\ \hline}}{ }$	Nb Niobium 41	Mo Molybdenum 42	Tc Technetium 43	$\underset{\substack{\mathrm{Ru} \\ \text { Ruthenium } \\ 44}}{\mathrm{Ru}}$		$\begin{gathered} \text { Pd } \\ \text { Palladium } \\ 46 \\ \hline \end{gathered}$	Ag Silver 47	$\begin{gathered} \mathrm{Cd} \\ \text { Cadmium } \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} \text { In } \\ \text { Indium } \\ 49 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Sn } \\ \text { Tin } \\ 50 \\ \hline \end{array}$	$\begin{gathered} \text { Sb } \\ \text { Antimony } \\ 51 \\ \hline \end{gathered}$	Te Tellurium 52	$\underset{\substack{\text { Iodine }}}{1}$	$\begin{gathered} \mathrm{Xe} \\ \text { Xenon } \\ 54 \end{gathered}$
6	133	137	139	179	181	184	186	190	192	195	197	201	204	207	209			
	Cs Caesium 55	Ba Barium 56	$\underset{\substack{\text { Lanthanum } \\ 57}}{\text { La }}$	Hf Hafnium 72	Ta Tantalum 73	W Tungsten 74	Re Rhenium 75	$\underset{\substack{\text { Osmium } \\ 76}}{\text { Os }}$	$\begin{gathered} \text { Ir } \\ \text { Iridium } \\ 77 \end{gathered}$	$\underset{\substack{\text { Platinum } \\ 78}}{\mathrm{Pt}}$	Au Gold 79		Thallium 81	$\begin{gathered} \mathrm{Pb} \\ \text { Lead } \\ 82 \end{gathered}$	$\begin{gathered} \mathrm{Bi} \\ \text { Bismuth } \\ \mathrm{B3} \\ \hline \end{gathered}$	$\begin{gathered} \text { Po } \\ \text { Polonium } \\ 84 \\ \hline \end{gathered}$	At Astatine 85	Rn Radon 86
7	223 Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89															
Key																		
							Relative ato mass Symbol Name Atomic num											

Answer ALL questions.

1 The three states of matter are solid, liquid and gas.
(a) Substances can be changed from one state to another.

The box lists some words relating to changes of state.

condensing	cooling	evaporation
heating	melting	sublimation

Complete the table by giving the correct word from the box for each change of state.
Each word may be used once, more than once, or not at all.

Change of state	
from solid to liquid	Melting
from liquid to gas of change	
from solid to gas	Evaporation

(b) The particles in a solid are closely packed, arranged in a regular pattern and vibrate about a fixed position.

Describe the arrangement and movement of the particles in a gas.
(3)

Gas parties have an irregular arrangement with large gaps between them. They move freely and quidry.

2 Rock salt is a mixture of the soluble salt, sodium chloride, and some insoluble impurities.
The diagram shows the first three stages of a method used to obtain pure sodium chloride from rock salt.

Stage 1
rock salt crushed
crushed rock salt

Stage 3 added to water
(a) Name the pieces of apparatus labelled X, Y and Z
x Tripod
y. Funnel
z Evaporating basin
(b) (i) State why the mixture of rock salt and water is warmed and stirred in stage 2.

So the sodium chloride dissolves more quickly.
(ii) What is water in stage 2?
$\square \quad$ A a residue
$\square \quad$ B a solute
$\square \quad$ C a solution
(D a solvent
(c) (i) Explain what happens to the impurities in stage 3.
(2)
Impurities remain in the filter insoluble.
(ii) What is the liquid collected at the end of stage 3?
\square A a residueB a solute
($\mathbf{*}$ a solutionD a solvent

BLANK PAGE

3 Crude oil is a mixture of hydrocarbons.
(a) The diagram shows a column used in the industrial process to separate crude oil.

(i) Name the industrial process used to separate crude oil.

Frationd distillation.

(ii) State a use for kerosene and a use for bitumen.
kerosene Fuel for aircraft bitumen Roads
（b）A molecule of the hydrocarbon eicosane has the formula $\mathrm{C}_{20} \mathrm{H}_{42}$
（i）Explain which homologous series eicosane belongs to．
Alkanes because $\mathrm{C}_{20} \mathrm{H}_{42}$ fits the generd formula of alkanes， $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ ．
\qquad
\qquad
（ii）Name a catalyst used in the industrial cracking of eicosane．
Silica
（iii）In a possible reaction for the cracking of eicosane，the products are three molecules of $\mathrm{C}_{4} \mathrm{H}_{8}$ and one molecule of another hydrocarbon．

Complete the equation for this reaction．

$$
\begin{equation*}
\mathrm{C}_{20} \mathrm{H}_{42} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{8} \mathrm{H}_{18} \tag{1}
\end{equation*}
$$

Contains only carbon and Hydrogen．
\qquad
\qquad
（ii）State what is meant by a hydrocarbon being saturated．
Contains only single carbon－carbon bonds．
(iii) Describe a chemical test used to distinguish between unsaturated and saturated hydrocarbons.
test Bromine water.
results. Saturated hydrocarbons case bromine water
to turn colourless from orange.
Unsaturated hydrocerbons produce no change.
\qquad
\qquad
(d) The unsaturated hydrocarbon $\mathrm{C}_{4} \mathrm{H}_{8}$ has several isomers.

The displayed formula for one of these isomers is

(i) Name this isomer.
but-1-ene
(ii) Draw the displayed formula of another isomer of $\mathrm{C}_{4} \mathrm{H}_{8}$

(Total for Question 3 = 15 marks)

4 (a) (i) Explain what is meant by the term covalent bonding.
(2)

Electrostatic attraction between a shared pair of electrons and both nuder.
(ii) Draw a dot and cross diagram to show the bonding in a molecule of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$ Show only the outer electrons.

 \times

$x 0 x$
C

0

(b) Substances A and B are covalently bonded and have simple molecular structures.

The table gives the boiling points for substances A and B.

Substance	Boiling point in ${ }^{\circ} \mathrm{C}$
A	-42
B	-0.5

(i) Explain why substances with simple molecular structures have low boiling points.
(ii) Suggest why the boiling point of B is higher than the boiling point of A.

- has stronger inter molecular forces than A.
\qquad
\qquad
(iii) Substance B has the empirical formula $\mathrm{C}_{2} \mathrm{H}_{5}$ and an M_{r} value of 58 .

Determine the molecular formula of substance B.

$$
\begin{align*}
& 2(12)+5=29 \tag{2}\\
& \frac{58}{29}=2
\end{align*}
$$

$$
\mathrm{C}_{4} \mathrm{H}_{10}
$$

(c) Substance X is also covalently bonded, but its structure is different from that of A and B. It has a boiling point of $2230^{\circ} \mathrm{C}$.

Explain, in terms of its structure, why X has such a high boiling point.
X has a giant cordent structure with manystrong covalent bonds which require large aments of energy
\qquad
\qquad

5 Hot, molten sulfur reacts with oxygen to form sulfur dioxide gas.
(a) Describe what is seen when a sample of hot, molten sulfur is lowered into a gas jar containing oxygen.

Blue flame

Write a chemical equation for this reaction.
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(c) This apparatus can be used to collect a pure, dry sample of sulfur dioxide gas.

(i) Suggest the purpose of the silica gel.

To dry the goes. \qquad
\qquad
(ii) Name the method used in the diagram to collect the sulfur dioxide gas.

(iii) State the physical property of sulfur dioxide gas that allows it to be collected in this way.

Denser then air

(d) A sample of sulfur dioxide reacts with water to form an acidic solution.
(i) Identify the acid formed.

Sulfurous acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$
(ii) A few drops of methyl orange indicator are added to this solution.

State the colour of the indicator in this solution.

Red / pink

(iii) Give the formula of the ion responsible for this colour.

Orange

6 A student investigates the rate of the reaction between magnesium ribbon and dilute hydrochloric acid. The products are magnesium chloride and hydrogen.
(a) The equation for the reaction is

$$
\mathrm{Mg}(S)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

Complete the equation by adding the state symbols.
(b) The student uses these pieces of apparatus in his experiment.

This is his method.

- clean a strip of magnesium ribbon to remove the oxide layer
- pour $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid into the flask
- put the clean magnesium ribbon into the flask
- quickly put the bung into the flask to connect the gas syringe
- record the volume of gas in the syringe every minute for eight minutes
(i) Suggest why the student cleans the magnesium ribbon to remove the oxide layer.

To increase the rate of reaction.
(ii) Suggest why the student needs to put the bung into the flask quickly.

To prevent Hydrogen gas from escaping.
\qquad
\qquad
(iii) Suggest when the student should start the stop watch.

As soon as they put the bung into the Sask.
\qquad
\qquad
(c) The graph shows the results of the student's experiment.

(i) Use the graph to find the volume of gas in the syringe at one minute.

Show on the graph how you obtained your answer.
volume $=22$ cm^{3}
(ii) Use the graph to find the time when the reaction stops.
(1)
time $=5.3$ minutes
(iii) Suggest two possible reasons why the reaction stops.

1. All the magnesium has reacted.
\qquad
2. All hydrochlonz cit has reacted.
\qquad
(iv) Explain when the rate of reaction is greatest.

At the start of the reaction, as the curve is steepest.
\qquad
\qquad
\qquad
(d) Explain how increasing the concentration of the hydrochloric acid affects the rate of the reaction with magnesium.

Refer to the particle collision theory in your answer.
More partides in the some volume so more successful collisions per unit time. This means the rate of reaction increases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 In the Periodic Table, the vertical columns of elements are called groups.
(a) The table gives some information about the first four elements in Group 0.

Element	Relative atomic mass $\left(\mathbf{A}_{\boldsymbol{r}}\right)$	Boiling point in ${ }^{\circ} \mathbf{C}$
helium	4	-269
neon	20	-246
argon	40	-186
krypton	84	-153

(i) State the relationship between the relative atomic mass and the boiling point of these elements.

The greater the relative atomic mass the higher the boiling point.
(ii) State why the elements in Group 0 are unreactive.

They do not easily gain or lose elections.
(b) The elements in Group 7 of the Periodic Table are called halogens.

State why the halogens have similar chemical properties.
Refer to electronic configurations in your answer.
They al have seven elections in their outer shell.
\qquad
(c) The order of reactivity of the halogens can be shown by using displacement reactions.
(i) When chlorine is added to sodium bromide solution, chlorine displaces bromine.

Write a chemical equation for this reaction.
$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
(ii) State the colour of the solution formed in this reaction.

Orange
(iii) Explain whether or not a reaction takes place when bromine water is added to sodium chloride solution.

No reaction, as bromine is less reactive than chlorine so it cannot displace the chlorine.
\qquad
\qquad
(iv) The displacement reaction between potassium iodide and chlorine can be represented by the ionic equation

$$
2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}
$$

Explain why this is described as a redox reaction.
F^{-}
ions lose electrons so are oxidised. \qquad
C_{2} molecules gain elechans so are reduced.
\qquad
\qquad
(d) Chlorine reacts with hydrogen to form hydrogen chloride gas.
(i) Write the chemical equation for this reaction.
$\mathrm{H}_{2}+\mathrm{a}_{2} \rightarrow 2 \mathrm{HCl}$
(ii) Some methylbenzene is poured into beaker A .

Some water is poured into beaker B.
Hydrogen chloride gas is dissolved in each liquid.
A separate piece of dry blue litmus paper is dipped into each solution.

A
hydrogen chloride
dissolved in methylbenzene

B
hydrogen chloride dissolved in water

Explain what happens to

- the piece of litmus paper dipped into beaker A
- the piece of litmus paper dipped into beaker B.
beaker A \qquad
H^{+}ions in methyl benzene.
\qquad
\qquad
\qquad
\qquad
beaker B Lifmustums red as H^{+}ions are formed.
\qquad
\qquad
\qquad
\qquad
\qquad

8 The table shows information about the effect of adding sodium hydroxide solution to solutions containing zinc ions, calcium ions or aluminium ions.

Ion in solution	Effect of adding a few drops of sodium hydroxide solution	Effect of adding excess sodium hydroxide solution
zinc, Zn^{2+}	white precipitate forms	white precipitate disappears
calcium, Ca^{2+}	white precipitate forms	white precipitate remains
aluminium, Al^{3+}	white precipitate forms	white precipitate disappears

(a) A student is provided with a sample of a white solid.
(i) The student dissolves some of the white solid in water and then adds a few drops of sodium hydroxide solution. A white precipitate forms.

She concludes that the sample contains calcium ions.
Explain whether the student's conclusion is valid.
(2)

It is not valid because it could also be zinc or aluminium as we havan't seen the effect of adding excess Sodium hydroxide
(ii) Give a different test to show that the white solid contains calcium ions.
test Flame test
result
Brick red
(b) A hydrated salt has the formula $\mathrm{AB}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$
A is a positive ion and B is a negative ion.
When the hydrated salt is heated, this reaction occurs.

$$
\mathrm{AB}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{AB}_{2}+\mathrm{xH}_{2} \mathrm{O}
$$

A scientist heats a sample of the hydrated salt until all the water has been lost.
She records the mass of the salt before and after heating.
The table shows her results.

Mass of hydrated salt	Mass of salt after heating
6.1 g	5.2 g

(i) Describe how the scientist could make sure that all the water has been lost.

Reheat until constant mess. \qquad
\qquad
\qquad
\qquad
(ii) Use the scientist's results to find the value of x in $A B_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$

$$
\begin{align*}
{\left[M_{\mathrm{r}} \text { of } A B_{2}\right.} & \left.=208 \quad M_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{O}=18\right] \tag{4}\\
M\left(H_{2} \mathrm{O}\right) & =6.1-5.2 \\
& =0.9 \mathrm{~g} \\
n=\frac{m}{M_{r}} \quad n\left(A B_{2}\right) & =\frac{5.2}{208} \quad n\left(H_{2} \mathrm{O}\right)=\frac{0.9}{18} \\
& =0.025 \mathrm{md} \quad=0.05 \mathrm{md}
\end{align*}
$$

$$
x=2
$$

(c) Describe how the scientist could use a solution of the salt to find out if the negative ions are chloride ions.
$\mathrm{Add} \mathrm{HNO}_{3}$
Add AgNO_{3}
White precipitate forms.
(d) The test shows that the negative ions are chloride ions.
(i) Calculate the relative atomic mass of metal A using the formula and M_{r} value of the anhydrous salt, AB_{2}

$$
\begin{equation*}
208-2(35.5)=137 \tag{1}
\end{equation*}
$$

relative atomic mass of $A=137$
(ii) Identify metal A .

Barium

9 Some metals can be obtained by heating their oxides with carbon.
(a) The diagram shows a blast furnace used to produce iron from iron ore.

(i) Give the name of an iron ore.

Haematite

(ii) Explain the role of the hot air in the furnace.

To provide oxygen to rect with carbon.
(iii) Iron(III) oxide can be reduced by carbon.

Balance the equation for this reaction.
$2 \mathrm{Fe}_{2}+\ldots 3 \mathrm{C} \rightarrow \ldots \mathrm{Fe}+\ldots 3 \mathrm{CO}_{2}$
(iv) Limestone is one of the raw materials added to the blast furnace.

Explain how limestone removes the impurity, silica $\left(\mathrm{SiO}_{2}\right)$, from the furnace.
You may use equations to help your answer.
CaCO_{3} decomposes to form CaO
COO reacts with silica to form calcinmsilicate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) State why aluminium cannot be produced by heating its oxide with carbon.

- Aluminium 13 mare reactive than carbon. \qquad
\qquad
(ii) Describe how aluminium is extracted from purified aluminium oxide.

Aluminium is extracted by electrolysis. It is mixes with cryolite in a molten electrolyte. Carbon and graphite electrodes ore used. Aluminium is formed at the cathode.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 A student does a titration to find the concentration of a solution of aqueous ammonia.
He uses this method.

- use a pipette to add $25.0 \mathrm{~cm}^{3}$ samples of the solution into a conical flask
- add a few drops of indicator
- add sulfuric acid from a burette until the indicator changes colour permanently
- repeat the titration three more times
(a) (i) State what the student should do while adding the acid, to make sure that the indicator changes colour permanently.

Swirl Hash

The table shows the student's titration results.

Volume of acid added in $\mathbf{c m}^{\mathbf{3}}$	23.40	23.15	22.95	23.10
Concordant results				

Concordant results are volumes within $0.20 \mathrm{~cm}^{3}$ of each other.
(ii) Place ticks (\checkmark) in the table to show which results are concordant.
(iii) Use the concordant results to calculate the average (mean) volume of acid added.
(2)
$\frac{23.15+22.95+23.10}{3}$

$$
=23.07
$$

(b) The table shows the titration results of another student.

Volume of aqueous ammonia used in $\mathbf{~ c m}^{\mathbf{3}}$	25.0
Concentration of sulfuric acid in $\mathbf{m o l} / \mathbf{d m}^{\mathbf{3}}$	0.0800
Average volume of sulfuric acid added from burette in $\mathbf{~ c m}^{\mathbf{3}}$	22.70

The equation for the reaction is

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

(i) Calculate the amount, in moles, of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $22.70 \mathrm{~cm}^{3}$ of the sulfuric acid.
$n=C V$
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.0227 \times 0.08$
$=0.001816 \mathrm{~mol}$
\qquad mol
(ii) Calculate the amount, in moles, of NH_{3} in the aqueous ammonia.

$$
\begin{equation*}
1.816 \times 10^{-3} \times 2=0.003632 \mathrm{mdl} \tag{1}
\end{equation*}
$$

\qquad mol
(iii) Calculate the concentration, in $\mathrm{mol} / \mathrm{dm}^{3}$, of the aqueous ammonia.

$$
\begin{align*}
& C=\frac{n}{V} \tag{2}\\
& \begin{aligned}
C\left(\mathrm{NH}_{3}\right) & =\frac{3.632 \times 10^{-3}}{0.025} \\
& =0.14528 \mathrm{mddm}^{-3}
\end{aligned}
\end{align*}
$$

\qquad $\mathrm{mol} / \mathrm{dm}^{3}$
(c) Describe how you could use the method of crystallisation to obtain a pure, dry sample of ammonium sulfate from a dilute solution of ammonium sulfate.
(4)

Heat the solution until crystals form in a cooled sample.
Leave the solution until cryst as form.
Filter to obtan crystals.
Dry crystals using filter paper.
\qquad
(Total for Question $10=13$ marks)

TOTAL FOR PAPER $=120$ MARKS

