Please check the examination details below	v before entering your candidate information				
Candidate surname	Other names				
Pearson Edexcel International GCSE	e Number Candidate Numbe	er			
Monday 20 January 2020					
Afternoon (Time: 1 hour 15 minutes) Paper Reference 4CH1/2C					
Chemistry Unit: 4CH1 Paper 2C					
You must have: Calculator, ruler	Total M	arks			

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross X.

Information

- The total mark for this paper is 70.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P59924A ©2020 Pearson Education Ltd.

The Periodic Table of the Elements

							STORE STORE AND LONG.
0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9		16 O oxygen 8	32 S suffur 16	79 Selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 har authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn ^{fin} 50	207 Pb lead 82	mic numbers
3		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt methorium 109
	1 T hydrogen			56 iron 26	101 Ru ruthenium 44	190 Os osmium 76	(277] Hs hassium 108
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ɔol ıumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key relative atomic mass atomic symbol name atomic (proton) number			51 V vanadium 23	93 N b niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ ato atomic		48 Ti ttanium 22	91 Zr zirconium 40	178 Hf hafinium 72	[261] Rf rutherfordium 104
	,			45 Sc scandium 21	89 ×	139 La* lanthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions.

- This question is about elements, compounds and mixtures.
 - (a) Name the element that burns with a lilac flame.

(1)

potassium

(b) Name the technique used to separate the mixture of colours in black ink.

(1)

Paper Chromato graphy.

(c) The box gives the names of some substances.

air bromine

magnesium

neon

sodium chloride

sulfur

Choose substances from the box to answer these questions.

(i) Identify the compound.

(1)

Sodium Chloride

(ii) Identify the mixture.

(1)

Clir

(iii) Identify the non-metal element that is a solid at room temperature.

(1)

Salphur

(Total for Question 1 = 5 marks)

- **2** Crude oil is a mixture of hydrocarbons.
 - (a) Name the process used to separate crude oil into fractions.

(1)

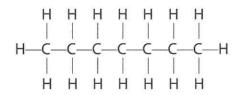
Fractional distillations

(b) Give one use of the kerosene fraction.

(1)

Averaft ful.

- (c) One of the hydrocarbons in the refinery gas fraction is an alkane with the structural formula $CH_3CH_2CH_3$
 - (i) Give the name of this alkane.


(1)

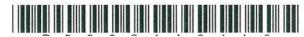
butane

(ii) Calculate the relative molecular mass (M_r) of this alkane.

(1)

(d) One of the alkanes in the gasoline fraction has the displayed formula

(i) Determine the molecular formula of this alkane.


(1)

CH16

(ii) Give the general formula for the alkanes.

(1)

Cn Hzn+2

- (e) Catalytic cracking is used to convert long-chain alkanes into shorter-chain alkanes.
 - (i) Name the catalyst used in catalytic cracking.

Silica.

(1)

(ii) Explain why it is necessary to convert long-chain alkanes into shorter-chain alkanes.

Those is greater demand for Short Chain allicanes then for ony Chain allicanes.

There is a Surplus of Long-Chain alkanes and not enough short nain allicanes to meet demands.

(f) Catalytic cracking also produces alkenes.

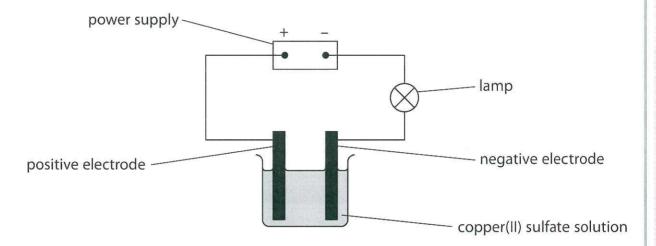
 $C_{11}H_{24}$ can undergo cracking to give pentane (C_5H_{12}) and two different alkenes.

Complete the equation for this cracking reaction.

(2)

$$C_{11}H_{24} \rightarrow C_5H_{12} + C_4H_8 + C_4H_8$$

(Total for Question 2 = 11 marks)


- This question is about copper and its compounds.
 - (a) Copper is a metal used for electrical wiring.

Explain why copper is a good conductor of electricity.

(2)

(b) This apparatus is used to investigate the electrolysis of copper(II) sulfate solution with graphite electrodes.

Copper forms at the negative electrode and oxygen forms at the positive electrode.

(i) State what would be observed at each electrode.

(2)

positive electrode

negative electrode Pinke-brown Solid formed

(ii) The ionic half-equation for the reaction at the negative electrode is

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

State why this is a reduction reaction.

(1)

opper ions gain ele Chrons.

(iii) Explain why the copper(II) sulfate solution becomes paler blue during the electrolysis.

The thre Colour is Coursed by Cu24 ions. Copper ions are being removed from the Solution.

(c) When hydrated copper(II) sulfate crystals are heated, anhydrous copper(II) sulfate forms.

A mass of 12.5 g of hydrated copper(II) sulfate crystals is heated in a crucible until all the water of crystallisation is removed.

A mass of 8.0 g of anhydrous copper(II) sulfate forms.

Show by calculation that the formula of hydrated copper(II) sulfate is CuSO₄.5H₂O

 $[M_r \text{ of } CuSO_4 = 159.5 \quad M_r \text{ of } H_2O = 18]$ $CuSO_4 \quad M_2O$ $Ress \quad 8.0 \quad 12.5 - 8.0$ $Ress \quad 159.5 \quad 18$ (4)

5 0.0502; 0.25 5 malkest 0.0502 0.0502

5 1: 5

: GSO4. 5H20

(Total for Question 3 = 11 marks)

4 A student investigates the reaction between sodium hydroxide solution and dilute sulfuric acid.

He does a titration to find the concentration of the sulfuric acid.

This is his plan for the titration. There are some mistakes and omissions in his plan.

- rinse a conical flask with the sodium hydroxide solution
- use a measuring cylinder to measure out 25 cm³ of the sodium hydroxide solution and add it to the conical flask
- add a few drops of methyl orange indicator to the conical flask
- rinse a burette with water and then fill it with the sulfuric acid

(a) Give the colour change of the methyl orange indicator at the end-point.

- add the acid from the burette to the conical flask until the indicator changes colour at the end-point of the titration
- record the final burette reading

	(2)
from Yellow to Orange	
(b) Describe four changes that the student could make to improve his plan.	(4)
1- Rinse the flade with water, not Sodium hydroxicle	2 •
- Measure Sodium hydroxide Shution with pipette.	
- Rinse burette with Sulphuric acid, not water.	
2 - Re Cord the initial bwette reading.	
-Place a white tile under the flask.	
- Swirt the flash whilst adding acid.	
3 - Add acid drop-wise near endpoint.	
-Repeat the Etrabian to Obtain ConCordant resul	ts and
Calculate as average.	
4	

(c) The student then does the titration correctly.

He finds that 16.70 cm³ of the dilute sulfuric acid neutralises 25.0 cm³ of sodium hydroxide solution of concentration 0.200 mol/dm³

The equation for the reaction is

$$2NaOH \ + \ H_2SO_4 \ \rightarrow \ Na_2SO_4 \ + \ 2H_2O$$

Calculate the concentration, in mol/dm³, of the sulfuric acid.

$$n(NaOH) = (anc xvol = 0.2 \times 25 xce^3 = 5 xce^3 mol$$

Ratio $n(NaOH: H_2SO_u) = 42i$
 $n(H_2SO_u) = \frac{5xce^3}{2} = 2.5 xce^3 mol$
 $n(H_2SO_u) = \frac{mol}{Vol} = \frac{2.5 xce^3}{16.7 xce^3} = 0.14970059 88 mol don3$

concentration of sulfuric acid = $\frac{0.150}{(3.5065)}$ mol/dm³

(Total for Question 4 = 9 marks

- 5 Oxygen can be prepared from hydrogen peroxide using a catalyst.
 - (a) Which is a correct statement about oxygen?

(1)

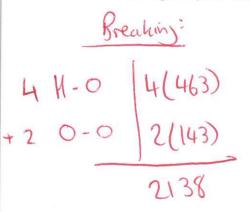
- ☐ **A** it burns with a squeaky pop
- **B** it relights a glowing splint
- ☐ **C** it turns blue litmus red
- ☐ **D** it turns limewater milky
- (b) Explain how a catalyst increases the rate of a reaction.

The Catalyst provides an alternative reaction pathway with a lower activation energy.

(c) The equation for the preparation of oxygen from hydrogen peroxide is

$$2H_2O_2\,\rightarrow\,2H_2O\,+\,O_2$$

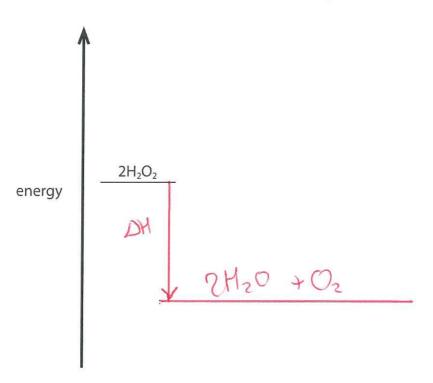
This equation can also be written using displayed formulae to show all the covalent bonds in the molecules.


$$2H-O-O-H \rightarrow 2H-O-H + O=O$$

The table gives the bond energies for these bonds.

Bond	H—0	0—0	0=0
Bond energy in kJ/mol	463	143	498

(i) Use the values in the table to calculate the enthalpy change, ΔH , for the reaction.


Include a sign in your answer.

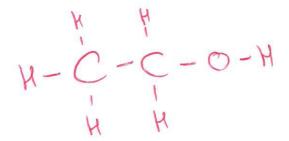
(2)

(3)

(ii) Complete the energy level diagram to show the position of the products and the enthalpy change, ΔH , for the reaction.

(Total for Question 5 = 8 marks)

- **6** Ethanol, C_2H_5OH , can be manufactured from ethene and steam using a phosphoric acid catalyst.
 - (a) (i) State the temperature and pressure used in this manufacturing process.


(2)

temperature 300°C

pressure 60 - 70 of

(ii) Draw the displayed formula of ethanol.

(1)

- (b) Ethanol burns in a plentiful supply of air to form carbon dioxide and water.
 - (i) Give the chemical equation for this reaction.

(2)

C2H5OH+302 -> 2CO2 + 3H2O

(ii) When the air supply is limited, incomplete combustion occurs and carbon monoxide forms.

State why carbon monoxide is poisonous to humans.

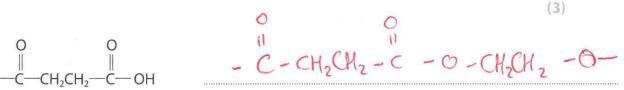
It reduces the Capacity of the blood to Carry oxygen.

(c) When ethanol reacts with ethanoic acid, an ester forms.

Give the name of this ester.

(1)

Ethyl etharoate.


- (d) Butanedioic acid and ethanediol react together to form a polyester and water.
 - (i) Give the name of this type of polymerisation.

Condensation pulymerisation.

(1)

(ii) Complete the equation.

Show only one repeat unit of the polyester.

HO-CH₂CH₂-OH

2420

(Total for Question 6 = 11 marks)

7	This question is about some Group 2 elements and their compounds.					
	(a) Calcium reacts with water to produce calcium hydroxide and hydrogen gas.					
	(i) Give the word equation for this reaction.	(1)				
	C4 24 20 2 3 Ca (OH) 3 2 CHEM					
	(ii) State two observations that would be made during this reaction.	jelrogen.				
	(ii) State two observations that would be made daming this reaction.	(2)				
1	rceing					
2	Calcium Metal disappears Bealer feels hift.					
	(b) (i) Describe how a pure, dry sample of the insoluble salt, barium sulfate, could be made from the two solids sodium sulfate and barium chloride.					
0.000	- Dissilve each of the two Slids in water.	(5)				
-	- mix the two Shubians together.					
-	fifter the mixture					
-	Wash the precipitate.					
******	Dry the Solid in a warm oven.					
44,6464						
******	(ii) Give an ionic equation for the reaction that occurs.					
	Include state symbols in your equation.					
	Ba (ag) + SO4 (ag) - BaSO4 (3)	(2)				
	V					

(c) When magnesium nitrate is heated, magnesium oxide, nitrogen dioxide and oxygen form.

The equation for the reaction is

$$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$$

(i) What is the name for this type of reaction?

(1)

- A addition
- B combustion
- ▼ C decomposition
- □ D neutralisation

(ii) Calculate the **total** volume, in dm³, of gas produced at rtp when 7.7 g of magnesium nitrate completely reacts.

[Assume that the molar volume of a gas at rtp is 24 dm³]

 $[M_r \text{ of Mg}(NO_3)_2 = 148]$

Give your answer to two significant figures.

$$n\left(M_{5}(NO_{3})_{2}\right) = \frac{mass}{N} = \frac{7.7}{148} = 0.05202702703 \text{ mol}$$

Ratio $n\left(M_{5}(NO_{3})_{2}\right) : n\left(Gas\right) = 2:5$
 $n\left(Gas\right) = \frac{5}{2} \times 0.052$
 $= 0.130 \text{ mol}$
 $V\left(Gas\right) = 24 \times 0.130$
 $= 3.13 \text{ dm}^{3}$

TOTAL FOR PAPER = 70 MARKS