| Please check the examination details be | oelow before ente | ring your cand | lidate information | |---|-------------------|---|--------------------| | Candidate surname | | Other names | | | | | | | | Pearson Edexcel | entre Number | | Candidate Number | | International GCSE (9–1) | | | | | | | | | | Thursday 14 M | lay 20 | 20 | | | | | | | | Morning (Time: 2 hours) | Paper Re | eference 40 | H1/1C 4SD0/1C | | Chemistry | | | | | Unit: 4CH1 | | | | | Science (Double Award) | 4SD0 | | | | Paper: 1C | 1300 | | | | Taper. IC | | A. W. Colonia and | | | You must have: | | | Total Marks | | Calculator, ruler | | | | | | | | | ### Instructions - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. - Show all the steps in any calculations and state the units. - Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈. ### Information - The total mark for this paper is 110. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. ### Advice - Read each question carefully before you start to answer it. - Write your answers neatly and in good English. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P62045A ©2020 Pearson Education Ltd. 1/1/1/1/1/1/1/1/ # The Periodic Table of the Elements | | | | | | ALL STREET OF VIETNAME | | | |---|----------------------|---|--------------------------------|------------------------------------|-------------------------------------|---------------------------------------|---| | 0 | 4 He helium 2 | 20
Ne | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | | 7 | | 19
1000 H | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but not | | 9 | | 16
0 0
8 | 32
Sulfur
16 | 79
Selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ive been rep | | 2 | | 14
N
nitrogen
7 | 31
Phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112–116 ha
authenticated | | 4 | | 12
carbon
6 | 28
Silicon
14 | 73
Ge
germanium
32 | 119
Sn
50 | 207 Pb lead 82 | mic numbers | | 3 | | 11
Boron
5 | 27
Al
aluminium
13 | 70
Ga
gallium
31 | 115
Indium
49 | 204
TI
thallium
81 | Elements with atomic numbers 112–116 have been reported but not fully authenticated | | | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elem | | | | | * | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
90ld
79 | Rg
roentgenium | | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | Ds
darmstadtium
110 | | - | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
Ir
indium
77 | [268]
Mt
meitnerium
109 | | | T
hydrogen | | ¥ | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | | 55
Mn
manganese
25 | [98] | 186
Re
rhenium
75 | [264] Bh bohnium 107 | | | | mass
bol
number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
N b
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relati
at o
atomic | | 48
Ti
litanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | Rf
rutherfordium
104 | | | | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La *
lanthanum
57 | [227] Ac* actinium 89 | | 2 | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40 Ca calcium 20 | 88
Sr
strantium
38 | 137
Ba
barium
56 | [226]
Ra
radium
88 | | ~ | | 7
Li
lithium
3 | Na
sodium
11 | 39 K polassium 19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | | | | | | | | | | * The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. TO THE STITUTE OF # Answer ALL questions. This question is about chemical elements. Use the Periodic Table to help you answer this question. (a) (i) Identify the element with atomic number 5 (1)(ii) Give the symbol of a metallic element in Period 3 (1)______ (iii) Identify the element whose atoms contain 14 protons. (1)silicon (iv) Identify the element whose atoms have the electronic configuration 2.5 (1)Nitrogen (v) Give the name of the compound formed between oxygen and the element with atomic number 13 (1) | (b) The n | position of an element in the Periodic Table can be used to predict its properties. | The state disable measure knowledge | |------------|---|-------------------------------------| | | | | | | hich group contains elements that are all unreactive? (1) |) | | □ A | Group 2 | | | □В | Group 5 | | | □ C | Group 6 | | | ⊠ D | Group 0 | | | | | | | (ii) W | hich of these is the least reactive element in Group 1? | 3 | | □ A | caesium (1) |) | | ⊠ B | lithium | | | □ C | potassium | | | | | | | □ D | sodium | | | □ D | |) | | □ D | sodium (Total for Question 1 = 7 marks) |) | | □ D | |) | | □ D | |) | | □ D | |) | | □ D | |) | | □ D | |) | | _ D | | | | _ D | |) | | _ D | | | | _ D | | | | | (Total for Question 1 = 7 marks) | | (3) 2 (a) The boxes list changes that may happen in a laboratory and the names of some changes. Draw one straight line from each change to its correct name. Change diffusion dissolving ice turns into water evaporation solid carbon dioxide turns directly into a gas freezing a solute is stirred into a solvent melting | (b) A student has two solids, X and Y. | |--| | One of these solids is a pure substance and the other is a mixture. | | Describe how the student could identify which solid is pure and which is a mixture by measuring a physical property of each solid. | | Measive the melting point of each Substance. If the | | Substance melts at a fixed, Sharp melting point it is pure. If it | | nelts over a range of bemperatures, it is impure. | | | | | | | | | (Total for Question 2 = 6 marks) - 3 This question is about metals. - (a) Metals can be arranged in a reactivity series based on their reactions with water and their reactions with dilute hydrochloric acid. The table shows how four metals, P, Q, R and S, react with water and with dilute hydrochloric acid. | Metal | Reaction with water | Reaction with dilute hydrochloric acid | |-------|---------------------------------|--| | Р | no reaction | hydrogen gas forms very slowly | | Q | no reaction | no reaction | | R | hydrogen gas forms very quickly | not done | | S | hydrogen gas forms quickly | hydrogen gas forms very quickly | (i) Identify which of the metals P, Q, R or S could be gold. (1) (1) (ii) Suggest why the reaction between metal R and dilute hydrochloric acid was not done. The reaction may be 600 Vijourous So Could be unsife. (iii) Use the information in the table to place the metals in order of reactivity from most reactive to least reactive. most reactive S least reactive | (b) Zinc is used to coat iron gates to prevent the iron from rusting. | | |--|--------------| | (i) State the name of this method of preventing iron from rusting. | (1) | | U (Monisaltion | | | (ii) State another method of preventing iron from rusting. | | | Paint 10il Grease Sacificial protection | (1) | | (c) A mixture of zinc powder and copper(II) oxide is heated. | | | The chemical equation for the reaction that takes place is | | | $Zn + CuO \rightarrow ZnO + Cu$ | | | (i) State how the reaction shows that zinc is more reactive than copper. | | | Zinc displaced Copper in the reaction. | (1) | | | | | (ii) Explain which substance is the oxidising agent. | | | | (2) | | CuO is the oxidisis agent as it loses | OXJjen. | | | <u> </u> | | | | | | | | (Total for Question | 3 = 8 marks) | | | | | phanen | na government out | | NATIONAL PROPERTY AND ADDRESS OF THE PARTY | |--------|-------------------|--|--| | | | | | | 4 | Sodi | um hydroxide dissolves in water, forming a strongly alkaline solution. | | | | Amm | onia dissolves in water, forming a slightly less alkaline solution. | | | | (a) (i | ldentify the ion that makes the sodium hydroxide solution alkaline. | | | | | OH- | (1) | | | | | | (1) CAUCA MUINTIN MAIN AND - (ii) What is a possible pH of ammonia solution? - □ A 3 - □ B 6 - ★ C 11 - □ **D** 14 - (b) When ammonia solution reacts with sulfuric acid, a neutralisation reaction occurs and ammonium sulfate forms. - (i) How does the sulfuric acid act in this reaction? (1) - ☐ **A** as a neutron donor - B as a neutron acceptor - C as a proton donor - □ D as a proton acceptor - (ii) The diagram shows a beaker containing some ammonia solution and a few drops of phenolphthalein indicator. Dilute sulfuric acid is added to the beaker until it is in excess. What are the colours of the phenolphthalein indicator before and after adding excess sulfuric acid? (1) | L.Y. | Ι Λ | |------|-----| | 100 | H | □ В \Box D | Before | After | |------------|------------| | orange | red | | yellow | red | | pink | colourless | | colourless | pink | (3) - (c) Ammonium sulfate is used by gardeners as a fertiliser because it contains nitrogen. - (i) Explain why the chemical formula of ammonium sulfate is $(NH_4)_2SO_4$ Refer to the charges on the ions in your answer. The armonium ion has a 1+ Charge. The Sulphate ion Las a 2- Charge. In (NH4) 2504, this formula enables the Charges to Cancel each other out, making it a neutral Compound. (ii) Calculate the relative formula mass of ammonium sulfate, (NH₄)₂SO₄ $MC = 2 \left(14 + 4(1) \right) + 32 + 4(16)$ = 132 relative formula mass = 132 (iii) Calculate the mass, in grams, of nitrogen in 1.0 kg of ammonium sulfate. mass (N) = loox 2(14) 132 = 212.121219 $mass = \frac{22}{3556}$ (Total for Question 4 = 10 marks) | 5 (a) Chlorine, bromine and iodine are elements in the Periodic Table. | | |---|---| | Explain how the position of these elements in the Periodic Table depend | ls on their | | electronic configurations. This is because | (2) | | All of these elements are in grove 7 - 1 they cut | * * | | electrons in their outer Shell. The number of S | shew the | | element has determines the period they are in | | | | | | (b) Chlorine reacts with methane to form CH₃Cl and HCl | | | (i) State the condition necessary for this reaction. | | | Utavislet and radiation- | (1) | | Octobioles all Lacionia. | | | (ii) Give the equation for this reaction. | | | CH1 + Cl2 -> CH3CI + HCI | (1) | | 3 | | | (iii) The bonds in a molecule of CH₃Cl are covalent. | a a | | Explain, in terms of electrostatic attractions, what is meant by a cova | lent bond. | | T Ob I allock to | (2) | | The pston electrostatic altraction between a | *************************************** | | electrons and the nuclei of the borded about | ડ. | | | | | | | | | | | | | | | | | | | (iv) Draw a dot-and-cross diagram for a molecule of CH₃Cl Show only the outer electrons of the atoms. (2) (2) Н Cl Н (v) CH₃Cl has a simple molecular structure. Explain why CH₃Cl has a low boiling point. | Weak | interno | | fores | require | little | energy | to | Verame |) | |-------|---------|---|--------|---|--------|--------|---------------|---|---| | achie | ved by | Cow | ten pe | ratives. | ************* | *************************************** | | | | | *************************************** | | *************************************** | •••••• | | | | | (c) Graphite is another substance that contains covalent bonds. The diagram shows the structure of graphite. Most covalent substances do not conduct electricity. Explain why graphite is able to conduct electricity. | A ele | Ctron fr | on each | Carson | aton | ìS | delocalised | So is free | ٤ | |--------|----------|---------|----------|------|----------|-----------------|------------|----------| | bonove | and | Conduct | electric | ty. | #**
& | Question 5 = 12 | | ******** | | 6 | The table shows the molecular | formulae of six organic compounds, A, B, C, D, E and F. | 68 | |---|-------------------------------|---|----| |---|-------------------------------|---|----| | Α | В | C | D | E | F | |------|------------------|------------------|------------------|-------------------------------|--------------------------------| | C₂H₄ | C₂H ₆ | C₃H ₆ | C₃H ₈ | C ₄ H ₈ | C ₄ H ₁₀ | (a) (i) Explain which homologous series compound B belongs to. B is antalogues or member of the alkanes homologous Series, fitting the general formula Coffents. (ii) Give the letter of the compound that has the same empirical formula as its molecular formula. 9 (1) (iii) Compound F exists as two isomers. Explain what is meant by the term isomers. Include the structures of the two isomers of compound F in your answer. methyl propane | (b) Describe how compound D can be obtained from crude oil using the industrial process of fractional distillation. The Grade Oil is Vapourised before passing into the fractions. Suparate be Cause they have different boilingours D is allected at the top of the Column. | (4) bush ating points. | |---|------------------------| | (c) Compound C can be used to make a polymer. (i) State the type of polymer formed from compound C. Addition polymer. | (1) | | (ii) Name the polymer formed from compound C. | (1) | | (iii) Draw the structure of this polymer. Include the displayed formula of the repeat unit. H C H H C H H C H H C H H | (2) | | (Total for Question 6 = 14 ma | arks) | 7 Dilute hydrochloric acid reacts with a solution of sodium thiosulfate $(Na_2S_2O_3)$ to form a precipitate. The equation for the reaction is $$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + S(s) + H_2O(l) + SO_2(q)$$ (a) State the name of the precipitate that forms. Sulphur. (1) (b) The reaction is often used to investigate rates of reaction. The diagram shows the apparatus a student uses to investigate the effect of temperature on the rate of the reaction. This is the student's method. - pour 50 cm³ of cold sodium thiosulfate solution into a conical flask and heat it to 20°C - draw a cross (X) on a piece of paper and place it under the flask - add 5 cm³ of dilute hydrochloric acid to the flask - look at the cross from above and record the time taken until the cross cannot be seen The student repeats the experiment four times, using sodium thiosulfate solution at a different temperature each time. He keeps the volumes of sodium thiosulfate solution and hydrochloric acid constant in each experiment. Give two other factors that the student should keep constant. 1 Concentration of hydrochloric acid/Sochum thiosuphate. Height of eye oubore flask. (c) The table shows the student's results. | Temperature in °C | Time until cross cannot be seen in s | |-------------------|--------------------------------------| | 20 | 400 | | 30 | 188 | | 40 | 84 | | 50 | 44 | | 60 | 24 | The highest temperature the student uses is 60°C because he thinks the results might not be as accurate at temperatures higher than 60°C. Suggest a reason why the results might not be as accurate at temperatures higher than 60°C. | The | Sodium | 0.1000 | 200000 | Course | pess | Con | down | and | (1)
not | | |--------|--------|--------------|-----------|--------|------|-----|------|-----|------------|--| | remain | at the | required ben | perature. | | | | | | | | (d) The student wants to compare the rates of the reaction at the different temperatures. He uses this formula to obtain a value for each rate of reaction rate = $$\frac{1}{\text{time in s}}$$ The table shows the value of the rate of reaction at each temperature. | Temperature in °C | Time until cross cannot be seen in s | Rate of reaction
in s ⁻¹ | |-------------------|--------------------------------------|--| | 20 | 400 | 0.0025 | | 30 | 188 | 0.0053 | | 40 | 84 | 0.012 | | 50 | 44 | 0.023 | | 60 | 24 | 0.042 | Plot the values of temperature and rate of reaction on the grid. Draw a curve of best fit through the points. | (e) (i) Use the graph to determine a value for the rate of the reaction at 45°C. | | |---|-----------------| | Show on the graph how you obtained your answer. | | | (2) | | | rate of reaction = 0.017 | s ⁻¹ | | (ii) Calculate the time that it would take for the cross not to be seen at 45°C. | | | $\frac{1}{1} = 0.017$ | | | = 58.823S2941 s | | | | | | time = $\frac{58.8}{(3.5)}$ | S | | (iii) Describe the relationship between rate of reaction and temperature shown by the graph. |) | | (1) | | | As temperature increases, the rute of reaction increases. | | | | | | (f) Explain, in terms of particle collision theory, the effect that increasing the temperature has on the rate of a reaction. | | | A = b = a = b = a = b (3) | | | As temperative increases, the mean kinetic energy of particles | | | intreases So there are more frequent Successful allisions So | | | the rate of reaction increases. | (Total for Question 7 = 14 marks) | | | | | A student uses this apparatus to investigate the heat energy change when a salt dissolves in water to form a solution. This is the student's method. - add 50 cm³ of distilled water to a polystyrene cup - record the initial temperature of the water - add a known mass of solid anhydrous copper(II) sulfate to the polystyrene cup and stir the solution with the thermometer until all the solid has dissolved - record the maximum temperature of the copper(II) sulfate solution - (a) (i) Name the piece of apparatus the student should use to add the distilled water to the polystyrene cup. (ii) The student stirs the solution to help the solid dissolve more quickly. Suggest another reason why the student stirs the solution. (1)ensures the bemoerature is the Same throughout (iii) State the colour of the copper(II) sulfate solution. (1) (1) (b) The diagram shows the temperatures in one experiment. Complete the table, giving all values to the nearest 0.1°C. (3) | maximum temperature in °C | 27.3 | |-------------------------------|------| | initial temperature in °C | 24.4 | | increase in temperature in °C | 2.9 | - (c) In a second experiment, when a student dissolves the anhydrous copper(II) sulfate in 50 cm³ of distilled water, the increase in temperature is 3.3 °C. - (i) Show that the heat energy change (Q) in this second experiment is approximately 700 J. [for water, $$c = 4.2 \text{ J/g/}^{\circ}\text{C}$$] [mass of $$1.0 \, \text{cm}^3$$ of water = $1.0 \, \text{g}$] (2) (ii) In this experiment the student uses 1.70 g of the anhydrous copper(II) sulfate. Calculate the molar enthalpy change (ΔH) in kJ/mol. Include a sign in your answer. $$[M_r \text{ of CuSO}_4 = 159.5]$$ $$\begin{array}{l} [M, \text{ of } \text{CuSO}_4 = 159.5] \\ n\left(\text{CuSO}_4\right) = \frac{1.70}{159.5} = 0.01066 \text{ m} \delta) \\ \Delta H = \frac{693 \times \omega^3}{0.01066} = -65.01970588 \text{ m} \cdot \text{Dm} d^{-1} \end{array}$$ $$\Delta H = \frac{-65.0}{(3.5.1 \text{ fg})} \text{ kJ/mol}$$ (d) Another student does a similar experiment but uses hydrated copper(II) sulfate instead of anhydrous copper(II) sulfate. The table shows his results. | initial temperature in °C | 23.8 | |--|------| | final temperature in °C when all solid dissolves | 22.7 | Explain what the results show about the type of energy change that occurs when hydrated copper(II) sulfate dissolves. (2)lemperature de Greases, the reaction is endothermic. (Total for Question 8 = 14 marks) Baking soda can be used to make cakes increase in size in an oven. This is the equation for the reaction that takes place when baking soda is heated. $$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$ (a) (i) What type of reaction is this? (1) A combustion - Market B decomposition - **C** oxidation - **D** reduction - (ii) Suggest why the reaction makes the cakes increase in size. (1) Carson dioxide gas is produced. (b) A student uses this apparatus to investigate the reaction that takes place when sodium hydrogencarbonate is heated. This is the student's method. - weigh a crucible and record the mass - add some sodium hydrogencarbonate to the crucible, reweigh it and record the mass - heat the crucible and contents for five minutes, then allow to cool before weighing and recording the mass - heat the crucible and contents again for a further three minutes, then allow to cool before weighing and recording the mass - (i) Give a reason why the crucible and contents are heated for a further three minutes. | This | ensures | a | Lonstant | Mass | Can | be | reached | as | the | | |---------|---------------|------------|----------------|------------|-----------|---------|-------------|--------|---------|--| | Mach | ièn Joes | 6 | Completion. | (ii) The stud | lent consi | dered using a | lid on the | crucible | in the | experimen | nt. | | | | | Suggest | an advan | tage and a dis | advantag | e of usin | g a lid | on the crud | cible. | (2) | | | advanta | age This | preve | nts bhe | Solid f | ron Sp | itting | out. | | (4) | | | | J | disadva | ntage | <u></u> | ases W | ouldn't | easily |) be | able | to e | s Cape. | | | | | ····· | (1) (c) The table shows some of the student's results. | mass of crucible and sodium hydrogencarbonate in g | 29.75 | |--|-------| | mass of empty crucible in g | 26.50 | (i) Calculate the mass of sodium hydrogencarbonate that the student uses. $$mass = 29.75 - 26.50$$ $$= 3.25$$ (ii) Using this equation, calculate the maximum mass of sodium carbonate (Na₂CO₃) that could form in the student's reaction. $$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$ $$[M_r \text{ of NaHCO}_3 = 84 \qquad M_r \text{ of Na}_2\text{CO}_3 = 106]$$ $$n\left(N_{0}H(O_{3}) = \frac{3.25}{84} = 0.038690$$ $$RR n\left(N_{0}2CO_{3}\right) = \frac{0.03869}{2} = 0.01935 \text{ mol}$$ $$m\left(N_{0}2CO_{3}\right) = 0.01935 \times 106$$ $$= 2.0505952369$$ maximum mass = $$\frac{2.05}{(3.5.5)}$$ (d) In a second experiment, the student uses a larger mass of sodium hydrogencarbonate. She calculates that she should obtain 4.8 g of sodium carbonate. She actually obtains 4.2 g of sodium carbonate. (i) Calculate the percentage yield from the student's experiment. percentage yield = ______% (2) (ii) Other than spillages, suggest a possible reason why the student's actual yield is less than expected. Nut an the NaH(O3 reached or the NaH(O3 was (Total for Question 9 = 12 marks) 10 The table gives information about some lead compounds. | Compound | Formula | Appearance | Solubility in water | |------------------|-----------------------------------|--------------|---------------------| | lead(II) oxide | PbO | yellow solid | insoluble | | lead(IV) oxide | PbO₂ | brown solid | insoluble | | red lead oxide | Pb₃O₄ | red solid | insoluble | | lead(II) nitrate | Pb(NO ₃) ₂ | white solid | soluble | (a) When a sample of red lead oxide is heated, it changes into a yellow solid and a gas forms that relights a glowing splint. Complete the word equation for this reaction. (2) (ead (11) 0x.de + ((b) A sample of one of the oxides of lead contains 86.6% lead and 13.4% oxygen by mass. Show by calculation that the sample is lead(IV) oxide, PbO₂ $$[A_r \text{ of Pb} = 207]$$ $$A_{\rm r}$$ of O = 16] (3) .: Emperical formula PbO2 .: Lead (IV) Oxide. | (c) Red lead oxide reacts with warm dilute nitric ac | ıcid | nitric | dilute | warm | with | reacts | oxide | lead | Red | (c) | |--|------|--------|--------|------|------|--------|-------|------|-----|-----| |--|------|--------|--------|------|------|--------|-------|------|-----|-----| (i) Complete the chemical equation for the reaction. (ii) A student is given a sample of solid red lead oxide and some dilute nitric acid. Describe how the student could obtain a pure dry sample of lead(II) nitrate crystals. the Wam nttac acio. (ead oxide to obtain a Solubin of lead ntrade Solution Until Cystals to Cod. Crystals and dry (Total for Question 10 = 13 marks) **TOTAL FOR PAPER = 110 MARKS**