

Please check the examination details below	v before entering your candidate information								
Candidate surname	Other names								
Pearson Edexcel	e Number Candidate Number								
International GCSE (9–1)									
Wednesday 10 J	une 2020								
Wednesday 103	une 2020								
Afternoon (Time: 1 hour 15 minutes)	Afternoon (Time: 1 hour 15 minutes) Paper Reference 4CH1/2CR								
Chemistry									
Unit: 4CH1									
Paper: 2CR									
·	J								
You must have:	Total Marks								
Calculator	Total Marks								

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Show all the steps in any calculations and state units.
- Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

Information

- The total mark for this paper is 70.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

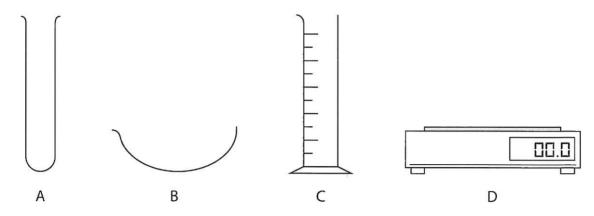
Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P62048A
©2020 Pearson Education Ltd.
1/1/1/1/

The Periodic Table of the Elements


		·					
0	4 He helium 2	20 Ne	40 Ar argon 18	84 krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7		19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	rted but not
9		16 0 8	32 sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	e been repo
2		14 N nitrogen 7	31 Phosphorus 15	75 As arsenic 33	Sb antimony 51	209 Bi bismuth 83	s 112–116 hav authenticated
4		12 carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Fin 50	207 Pb lead 82	Elements with atomic numbers 112–116 have been reported but not fully authenticated
က		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	nts with aton
	ı			65 Zn 2ine 30	112 Cd cadmium 48	201 Hg mercury 80	Eleme
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadium 110
				59 Co cobatt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meinerium 109
	1 Hydrogen			56 Fe	101 Ru ruthenium 44	190 Os osmium 76	(277) Hs hassium 108
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohnum 107
		nass ol umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ ato i atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf nuherfordium 104
	'			45 Sc scandium 21	89 Y yttrium 39	139 La * lanthanum 57	[227] Ac* actinium 89
7		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
_		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions.

1 The diagram shows some pieces of apparatus.

(a) Complete the table by giving the name of each piece of apparatus.

(4)

Letter	Name					
А	Test but / boiling tube					
В	Evapourating basin.					
С	Measing Cylinder					
D	Top-per balance.					

(b) Which piece of apparatus can be used to measure the volume of a liquid?

(1)

- \square B
- X C
- \Box D

(Total for Question 1 = 5 marks)

2 Thallium, Tl, is an element in Group 3 and Period 6 of the Periodic Table.

The atomic number of thallium is 81

(a) How many electrons are there in the outer shell of an atom of thallium?

(1)

□ B 6

□ **C** 13

□ **D** 81

(b) A thallium ion has a charge of 3+

How many electrons are there in this thallium ion?

(1)

□ A 3

☑ B 78

= 81-3

□ C 81

□ **D** 84

(c) A sample of thallium contains two isotopes.

The table shows the mass number and percentage abundance of each isotope in the sample.

Isotope	Mass number	Percentage abundance (%)
thallium-203	203	30.80
thallium-205	205	69.20

(i) Give the number of protons and the number of neutrons in one atom of the thallium-205 isotope.

(2)

number of protons

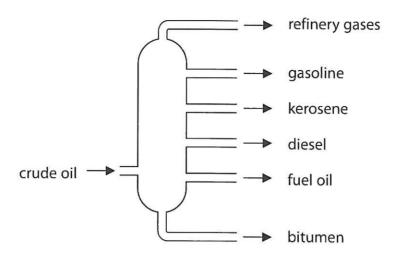
124

number of neutrons ...

(ii) Calculate the relative atomic mass of this sample of thallium.

Give your answer to one decimal place.

(3)


relative atomic mass =

(1d.p.)

(Total for Question 2 = 7 marks)

(a) The diagram shows a fractionating column used to separate crude oil into fractions.

(i) Give a use for bitumen and a use for gasoline.

(2)

use for bitumen Surfacing roads & roofs
use for gasoline fuel for Cars

(ii) Explain why bitumen is collected at the bottom of the fractionating column and gasoline is collected near the top of the fractionating column.

The Column is Coller at the better than at the bottom. Gasdine hour are boiling point than bitumen So is allected nearer the top.

- (b) There is a low demand for some of the fractions obtained from crude oil. Cracking can be used to convert these fractions into more useful substances.
 - (i) State the conditions needed for cracking.

Alumina Silica Catalyst.

(2)

(2)

(600 - 700° C

(ii) Dodecane (C₁₂H₂₆) can be cracked to produce an alkane and two alkenes.

Complete the equation by giving the formulae of the two alkenes.

(Total for Question 3 = 8 marks)

 $C_{12}H_{26} \rightarrow C_{7}H_{16} + \dots + \dots + \dots + \dots + \dots + \dots + \dots$

- This question is about some of the alkali metals and their compounds.
 - (a) When a teacher drops a small piece of sodium into a trough of cold water, she observes bubbles of gas.

Give two other observations that would be made when sodium reacts with cold water.

Sodium floats on the water Sulface.

Sodium melts & forms a ball

Sodium gets Smaller / disappears. Sodium forms white brail.

- (b) Lithium reacts with fluorine to form the compound lithium fluoride.
 - (i) Give a chemical equation for this reaction.

2Li + & -> 2LiF

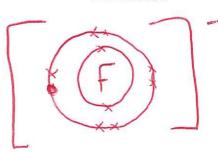
(1)

(2)

(ii) Give a test to show that lithium fluoride contains lithium ions.


A flame test produces a red flame, Showing lithium ions are

(iii) Draw diagrams to show the arrangement of the electrons in a lithium ion and in a fluoride ion.

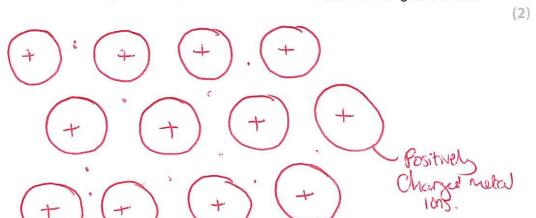

Include the charge on each ion.

(3)

lithium ion

fluoride ion

(c) The table shows the electronic configurations of sodium and potassium.


Element	Electronic configuration			
sodium	2.8.1			
potassium	2.8.8.1			

Explain, in terms of their electronic configurations, why potassium is more reactive than sodium.

0.								(3)	
Potass	Sin has	3 0	larger	atomic	raeliu	s with	have Barr	All inno	
Sher	Shieldin) than	in	Sodium.	Thre	is less	abruction	between 6h	_
outre/	eleibn	n and	the	Milleris	of 1	odassiun	meaning)	it can be last	
More	easily	Chen	Soch	m's oute	ele (tron, 1	Malein) pota	Ssilven more	
reactor	ve the	n Sod	ilm.				- 0		
									1256
(
						M 1501.501.601	Question 4 =	11 marks)	

- 5 This question is about the metal aluminium.
 - (a) (i) Draw a labelled diagram to represent the structure and bonding in a metal.

eleltrons

(ii) Explain why a metal conducts electricity.

Delocerlised elettrons Cen More.

(b) Aluminium is used to make cans for drinks.

Give two properties of aluminium that make it suitable for this use.

(2)

(2)

(au density

Malleable

2 clossn't react with dink

(c) Aluminium is extracted from aluminium oxide (Al_2O_3) by electrolysis.

The electrolyte is aluminium oxide dissolved in molten cryolite.

(i) State why aluminium cannot be extracted by heating aluminium oxide with carbon.

(1)

(2)

More reactive than Cerban.

(ii) Aluminium is produced at the negative electrode.

The ionic half-equation for the reaction is

$$Al^{3+} + 3e^{-} \rightarrow Al$$

State why this is a reduction reaction.

The Al34 glions gain electrons (reduction is

ele (bross).

(iii) Complete the ionic half-equation for the reaction at the positive electrode.

(Total for Question 5 = 10 marks)

6 A student wants to prepare sodium chloride crystals from sodium hydroxide solution and dilute hydrochloric acid.

He does a titration to find the volume of dilute hydrochloric acid needed to neutralise the sodium hydroxide solution.

This is his method.

- add 25.0 cm³ of sodium hydroxide solution to a conical flask
- add a few drops of phenolphthalein indicator to the conical flask
- titrate the solution with the hydrochloric acid
- (a) Name a suitable piece of apparatus that the student should use to measure 25.0 cm³ of sodium hydroxide solution.

- (c) The student finds that 21.50 cm³ of hydrochloric acid is needed to neutralise 25.0 cm³ of sodium hydroxide solution.
 - (i) Describe what the student should do next to prepare a pure solution of sodium chloride.

Add 2.50 Cm³ of hydrochloric acid to 25 Cm³ of Solium hydroxide Shution.

(ii)	Describe how the student could obtain dry crystals of sodium chloride from
	the pure sodium chloride solution.

Heat th	e Slubian	to ev	espoisabe	Some	of the	e Wat	e, form	inja
Saturded	Solution.	Leave	the S	lubin	60 (0	ol, allo	wing Cy	sbals
to form.	Filter of	f the (rystals	and t	sher de	ny the	Crystars	€
Cite A	Daper.		0			J	O	
						STATE OF THE STATE		

(d) The student needs 21.50 cm³ of hydrochloric acid to neutralise 25.0 cm³ of sodium hydroxide solution of concentration 0.800 mol/dm³.

The equation for the reaction is

$$NaOH \ + \ HCl \ \rightarrow \ NaCl \ + \ H_2O$$

Calculate the concentration, in mol/dm³, of the hydrochloric acid.

n (NaOM) = Corc xW = 0.8 x 25 x 163 = 0.02mil

n(MCI) = 0.02mol

=0.02 =0.930232

concentration = 0.930

... mol/dm³

(3)

(4)

(Total for Question 6 = 13 marks)

- 7 (a) Ethanol, C₂H₅OH, can be oxidised to produce ethanoic acid, CH₃COOH, by heating it with potassium dichromate(VI).
 - (i) Name one other reactant needed for this reaction to occur.

(1)

(ii) Which colour change occurs during this reaction?

(1)

- ☐ A colourless to green
- B green to orange
- □ C orange to colourless
- **D** orange to green
- (b) When ethanol is burned in air, complete combustion can occur.

The equation for this reaction is

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

This equation can also be written using displayed formulae to show all the covalent bonds in the molecules.

The table gives the bond energies for these bonds.

Bond	с—с	С—Н	c—o	О—Н	0=0	C=0
Bond energy in kJ/mol	346	412	358	463	496	743

(i) Use values from the table to calculate the energy needed to break all the bonds in the reactants.

$$= 5(412) + 358 + 463 + 346 + 3(496)$$

$$= 4715 \text{ KJms'}$$

- (ii) Use values from the table to calculate the energy released when all the bonds in the products are formed.

$$= 4(743) + 6(463)$$

$$= 5750 \, kJmd^{-1}$$

- energy releasedk.
- (iii) Calculate the molar enthalpy change (ΔH) in kJ/mol, for the complete combustion of ethanol.

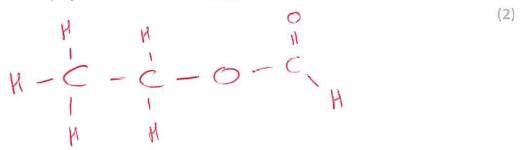
Include a sign in your answer.

$$\Delta H = \frac{1035}{\text{kJ/mol}}$$

(1)

(c) Ethanol reacts with methanoic acid, HCOOH, in the presence of an acid catalyst to form an ester.

The equation for the reaction is


$$C_2H_5OH + HCOOH \Rightarrow HCOOC_2H_5 + H_2O$$

(i) Give the name of the ester that forms.

(1)

ethyl methonocite.

(ii) Draw the displayed formula for this ester.

(iii) When this reaction takes place in a sealed container, the reaction can reach dynamic equilibrium.

Give two characteristics of a reaction at dynamic equilibrium.

forward and reverse reactions occur at the Same rate.

2 Concentrations of reactions and products don't Change.

(d) Methanoic acid reacts with sodium carbonate to form sodium methanoate, carbon dioxide and water.

The equation for the reaction is

Calculate the volume, in cm³, of carbon dioxide gas produced when 2.3 g of methanoic acid reacts completely with sodium carbonate.

 $[M_r \text{ of HCOOH} = 46]$

[molar volume of carbon dioxide at rtp = 24 dm^3]

$$n(HCOOH) = \frac{mass}{nr} = \frac{2.3}{46} = 0.05 \text{ mol}$$

$$n(CO_2) = \frac{0.05}{2} = 0.025 \text{ mol}$$

$$v(CO_2) = \frac{240000}{2} = 0.025$$

$$= 600 \text{ cm}^3$$

volume of carbon dioxide = _____co

(Total for Question 7 = 16 marks)

TOTAL FOR PAPER = 70 MARKS

