Please check the examination details b	elow before ente	ring your candidate information
Candidate surname		Other names
Pearson Edexcel International GCSE (9-1)	entre Number	Candidate Number
Monday 11 Jar	nuary	2021
Morning (Time: 2 hours)	Paper Re	eference 4CH1/1CR 4SD0/1CR
Chemistry Unit: 4CH1 Science (Double Award) 4 Paper: 1CR	ISD0	
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ☒. If you change your mind about an answer, put a line through the box ☒ and then mark your new answer with a cross ☒.

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

P67080A
©2021 Pearson Education Ltd.
1/1/1/1/

The Periodic Table of the Elements

7		
9		
2		
4		
က		
	1 エ	
	T hydra	
		Γ
		Key
		7
		L
2		
rest#C		-

20 **Ne** 10 10

19 9 9

40 argon 18

35.5 C C chlorine 17

					Į,
16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ave been rep
14 N nitrogen 7	31 P phosphorus	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated
12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn in 50	207 Pb lead 82	mic numbers
11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T1 thallium 81	Elements with atomic numbers 112–116 have been report
		65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
		63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium 111
		59 Nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadtium 110
		59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt metinerium 109
		56 Fe iron 26	101 Ru ruthenium 44	190 0s 0smium 76	[277] Hs hassium 108
		55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
mass bol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W lungsten 74	[266] Sg seaborgium 106
relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
relati at c atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
		45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
7 Li lithium 3	Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

85 **₹** 88

80 **Br** bromine 35

131 xenon 54

Rn radon 86

[210] **At** astatine 85

rted but not fully

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

Answer ALL questions.

1 The box lists some substances.

air	bromine	carbon	copper	glucose
	nitrogen	oxygen	sulfur	water

Choose substances from the box to answer these questions.

Each substance may be used once, more than once or not at all.

(a) Name a metallic element.

(b) Name a compound.

Glucose	/ water	(1
	,	

(c) Name a mixture.

(1)

Air

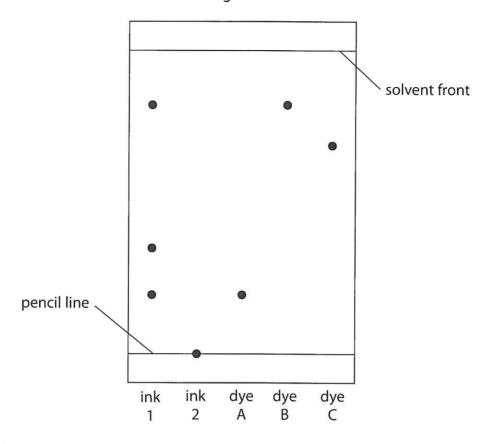
(d) Name an element that is a gas at room temperature.

Nitoger / Oxy Jen

(e) Name an element that forms a basic oxide.

Capper (1)

(f) Name two elements that are in the same group of the Periodic Table.


Oxygen of Sulphur.

(Total for Question 1 = 6 marks)

2 A student does a chromatography experiment using ink 1, ink 2, and three known dyes A, B and C. The student uses water as the solvent.

The diagram shows the student's chromatogram.

(a) Deduce what conclusions can be made about the composition of ink 1.

Ink 1 Contains 3 clyes, A, B and one ofther intersour into

(b) (i) Give one conclusion that can be made about ink 2.

It is insoluble in water-

(1)

(ii) Suggest how the student could change the experiment to find the composition of ink 2.

Repeat the expensent using a different Solvent.

(1)

(3)

(c) Calculate the $R_{\rm f}$ value of dye C, giving your answer to 2 significant figures.

$$R_{f} \text{ value} = \frac{0.69}{(2.5)}$$
(Total for Question 2 = 7 marks)

3 Crude oil is a mixture of organic compounds.

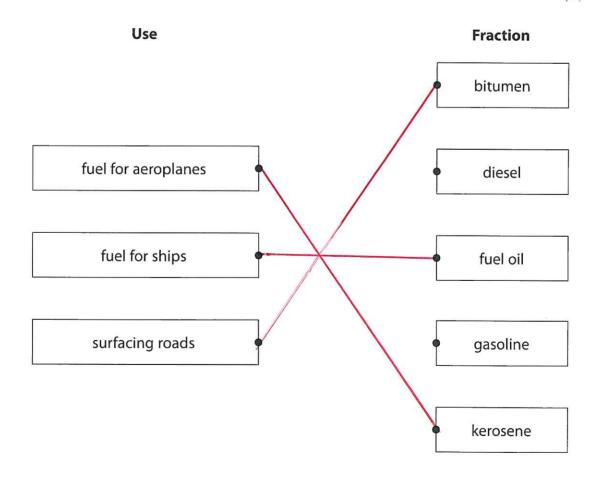
Most of these compounds are members of the same homologous series.

(a) State the name of this homologous series.

(1)

Alkanes

- (b) An industrial process is used to separate crude oil into fractions.
 - (i) The process depends on a difference in a property of the fractions.


 What is this property?

(1)

- 🔀 A boiling point
- B density
- C melting point
- □ **D** solubility
 - (ii) The boxes give some uses of fractions and some names of fractions.

Draw one straight line from each use to its correct fraction.

(3)

(c)	Fuels obtained	from the	fractions	may	contain	impurities
-----	----------------	----------	-----------	-----	---------	------------

Explain how the combustion of a common impurity in fuels may cause an environmental problem.

Sulphur impurities in the field burns in oxygen to form SO, which Can dissolve in water to form acid rain.

- (d) Some of the fractions contain long-chain molecules which are not very useful.
 - (i) Give the name of the process used to convert long-chain molecules into more useful shorter-chain molecules.

Cracking

(1)

(ii) Give the catalyst and temperature used in the industrial process to convert long-chain molecules into shorter-chain molecules.

(2)

catalyst

Silica Alumina.

temperature $600 - 700^{\circ}$ c.

(iii) When $C_{13}H_{28}$ is used in this process, three different molecules are formed.

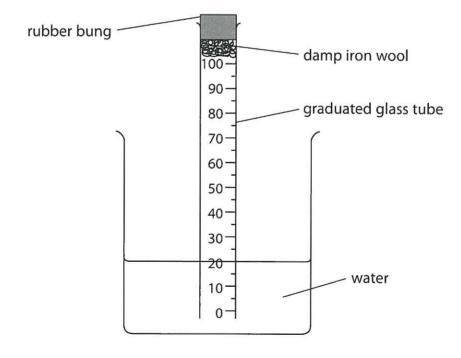
Complete the equation for this reaction.

(2)

$$C_{13}H_{28} \rightarrow C_{8}H_{18} + C_{3}H_{6} + C_{2}H_{4}$$

(Total for Question 3 = 13 marks)

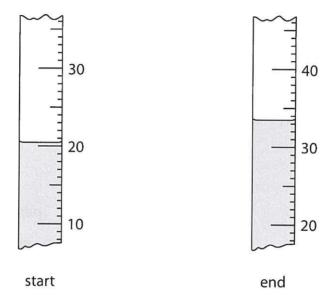
- 4 When iron is left in damp air, rust forms on its surface.
 - (a) (i) State the chemical name for rust.


(1)

Mydrated irontaloxicle.

(ii) Explain how a barrier method prevents rusting.

Coating the iron in paints, all or plastic Stops air and water from getting to the iron, necessing to con the non Cen't rust.


(b) A student uses this apparatus to find the approximate percentage by volume of oxygen in air.

This is the student's method.

- place a graduated glass tube in a beaker of water
- place some damp iron wool and a rubber bung in the top of the tube
- · record the reading of the water level in the tube
- leave the apparatus for a few days
- · record the reading of the water level again

The diagram shows the readings at the start and at the end of the experiment.

(i) Use the readings to complete the table, giving all values to the nearest $0.5\,\mathrm{cm^3}$.

reading at start in cm³

20.5

reading at end in cm³

33. 5

volume of oxygen used in cm³

)3. O

(ii) The student uses these results to calculate the percentage by volume of oxygen in air.

Suggest why her calculated value is lower than the expected value.

Not all exygn had reacted.

(1)

(c) The student repeats the experiment using the same apparatus.

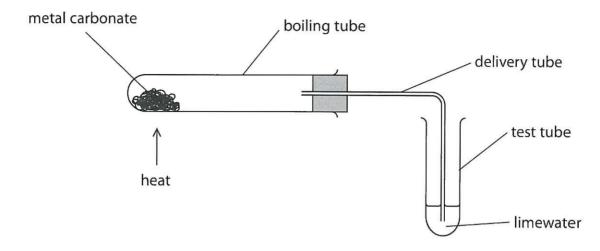
These are her results for the second experiment.

volume of air in tube at start = $80.0 \, \text{cm}^3$

reading at start = 20.0

reading at end = 35.5

Use the results to calculate the percentage by volume of oxygen in air.


$$V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$$

 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$
 $V(O_2) = 35.5 - 20.0 = 15.5 \text{ cm}^3$

percentage =9

(3)

(Total for Question 4 = 9 marks)

5 A student uses this apparatus to investigate the effect of heat on different solid metal carbonates.

This is the student's method.

- use a spatula to put some metal carbonate in the boiling tube
- fit the delivery tube into position
- pour some limewater into the test tube
- start a timer and immediately begin to heat the metal carbonate
- record the time when a change first occurs in the limewater

The student repeats the method using different metal carbonates.

When a metal carbonate is heated a reaction sometimes occurs.

The equation for the reaction is

metal carbonate → metal oxide + carbon dioxide

(a) State the name given to this type of reaction.	(4)
Therman decomposition.	(1)
(b) State two variables that the student should control in this investigation.	
	(2)
1 Finant of metal Carbonate	
Surface even of metal Components.	
2 Sand Volume of Imewater	
distance of flame from boiling tube.	
(c) Suggest why bubbles appear in the limewater immediately after heating h started but before there is any change to the metal carbonate.	nas
	(1)
Air from the tube expands on heating, Causing form in the linewater.	Subbles to
form in the linewater.	
(d) Explain the purpose of limewater in this investigation.	(2)
When linewater turns about it Shows Co. 2 (g) has	been produced.
Showing that the Mekcel Carbonate has de Composed.	,
J	

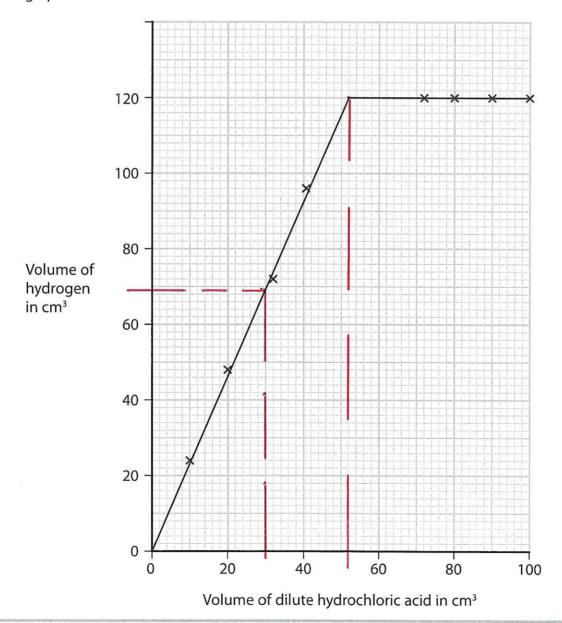
(e) The table shows some of the results for the student's investigation.

Metal carbonate	Colour change of solid	Time taken for any change in limewater
calcium carbonate	remains white	90 seconds
sodium carbonate	remains white	no change
copper(II) carbonate		50 seconds

	30didili carbollate	Terriairis writte	no change
	copper(II) carbonate		50 seconds
	(i) State the colour change	that occurs for copper(II) carbo	onate.
	from	een to black	
	(ii) Give a chemical equation	for this reaction of copper(II)	
,	Cu(03 -> C	uO + CO2	(1)
(f)	- 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10 - 10-10-10	tween the position of a metal carbonate reacts when heated	The same of the property control of the control of
		and your own knowledge to d	
the	lawer the Metal	is on the reactivity of	ries, the mare easily the
Me	tal Cersonate cle	Composes.	
		V	
		tend the investigation to see if	. (1)
Rep	eat the vivestijabion	, using more differ	ent) metal Carbonestes.
			7
		(Total fe	or Question 5 = 12 marks)

(2)

- 6 Zinc reacts with dilute hydrochloric acid to form hydrogen.
 - (a) (i) Give a chemical equation for this reaction.


Zn + ZHCI -> ZnCl2 + H2

(ii) Give a test for hydrogen gas.

When a lit Splint is added to the hydrogen Jos, a Squadey

pap is produced.

(b) A student investigates the reaction between pieces of zinc and dilute hydrochloric acid.
 In each experiment, he uses the same mass of zinc but a different volume of the acid.
 He collects the hydrogen and measures its volume in each experiment.
 The graph shows the student's results.

photosomous about a point and		
(i)	Use the graph to find the minimum volume of acid needed to react with all of the zinc. 52Cm^3	(1)
(ii)	The student repeats the investigation, using hydrochloric acid of double the original concentration.	
	Determine the volume of hydrogen that would be collected using 15 cm ³ of this acid.	
<u>L</u> ,	Show your working on the graph. Equivalent to using 3000 of accord half Concen treation. volume = 7	(2)
(c) Exp of i	plain how increasing the concentration of the hydrochloric acid affects the rate reaction.	(3)
There frequent	are more Ht ions per unit Volume go there are Successful Collisions per unit time. This Causes the Pate	more 2 to
morase	•	

(3)

(d) The rate of reaction could also be affected by changing the temperature of the hydrochloric acid, or by using a catalyst.

Explain one other way in which the rate of reaction between zinc and hydrochloric acid can be affected.

Increase the Surface area of the zinc by using the same mass of
Zone but of made of smaller pieces. This leads be more successful
Chlisians per unit time so the rate increases.
e e
(Total for Question 6 = 12 marks)

7 The formation of ions and covalent bonds involves electrons.

The table gives the electronic configurations of atoms of hydrogen, lithium and chlorine.

Element	Electronic configuration of ato	
hydrogen	1	
lithium	2.1	
chlorine	2.8.7	

- (a) Describe the different roles of electrons in the formation of
 - ions in lithium chloride
 - covalent bonds in hydrogen chloride

The	formation	of lithi	in Ohloric	he Sees	· the	lithium	atom	lase on e	ile Chron
which	15 0	pained by	a Chloir	re atom.					
					CO 1				
The fe	omation of	baler	bonds in	hychogen	Chlorica	e Jecs	ap	ar of	
electo	ons (one	from e	ach atom)	Shares	babween	a a	hydrox	v bord	a
Chlori	re abon.								

(b) Explain why lithium chloride has a higher melting point than hydrogen chloride.
Refer to structure and bonding in your answer.
Lithium Chloricle has a gent ionic Structure with Strong electrostatic attenuation between appositely Charged ions.
attraction between oppositely charged ions.
hydrogen Chloricle has a Simple indecular Souchere with weart interndecular forus between the indecules which require less every to protomethan
forus between the milecules which require less every totalorathan
to break and lower temperatures to overcome than the Strong
ionic bonds between book the ions in Lich.
(Total for Question 7 = 8 marks)

8 (a) (i) Organic compounds can	exist a	as isomers.
---------------------------------	---------	-------------

Explain what is meant by the term isomers.

Metercators with the Same redecutor formula but different displayed

Cornulae.

(ii) Organic compound Q reacts with bromine, without the presence of ultraviolet radiation, to form the compound $C_4H_8Br_2$

Draw the displayed formulae of two isomers of Q.

(2)

H - C = C - C - C - H H = R

(b) An acrylic polymer can be formed from molecules with this structure.

(i) A student describes the molecule as an unsaturated hydrocarbon.

Explain whether this is a correct description.

The milecule is institutable as to Contains a C=C clouble band.

The Meane isn't a hydrocarbon as to Contains oxygen.

(ii) Name the type of polymerisation that occurs in the formation of the polymer.

Addition.

(iii) Complete the equation for the polymerisation reaction.

n
$$C=C$$
H CH_3
COOCH $_3$
COOCH $_3$
COOCH $_3$
COOCH $_3$
 H
 C

(c) Octane is a compound in petrol.

The equation for the complete combustion of octane is

$$C_8H_{18} + 12.5 O_2 \rightarrow 8 CO_2 + 9 H_2O$$

(i) The fuel tank of a car contains 50.0 dm³ of octane.

Calculate the mass, in kg, of carbon dioxide formed if all the octane in the fuel tank undergoes complete combustion.

[mass of $1 \, dm^3$ of octane = $700 \, q$]

Mass of odene =
$$50 \times 700 = 35000 \text{ g}$$

(5)

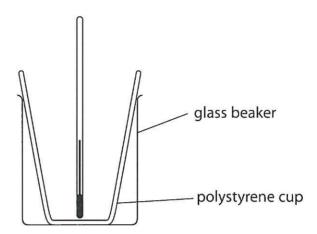
N (Octane) = $\frac{35000}{8(12)+18} = 307.0 \text{ mol}$

$$8(12)+18$$

 $1(02) = 8 \times 307 = 2456 \text{ mol}$
 $1(02) = (12 + 2(16)) \times 2456$

(ii) State an environmental problem caused by carbon dioxide.

(Total for Question 8 = 15 marks)


9 Lithium, sodium and potassium are the first three elements in Group 1 of the Period (a) Suggest why these three elements are all stored in paraffin oil. To prevent reaching with a oxygen or water.	dic Table. (1)
(b) Caesium, Cs, is below potassium in Group 1.	
(i) Give a similarity and a difference between the reactions of potassium with water. similarity Bth Fizz moning on the Surface and finduce a	(2)
difference A more Violent reaction occurs	frome.
(ii) Give the chemical equation for the reaction between caesium and water.	(2)
2Cs + 2H20 -> 2Cs OH + H2	

(1)

(c) A student investigates the temperature change in the reaction between dilute acids and solutions of Group 1 hydroxides.

He uses this apparatus.

This is the student's method.

- measure the temperature of 50 cm³ of hydrochloric acid
- pour the acid into a polystyrene cup
- add 50 cm³ of sodium hydroxide solution to the acid
- measure the maximum temperature of the mixture
- (i) Suggest what could be added to the apparatus to improve the experiment.

A lid over the Cup.

(ii) Explain a change to the method that would improve the accuracy of the experiment.

Stir blue Solution - Obbain a more or Clarate temperature. (2)

Measure the benjerature of NoOH - Check if it's the same as or different to that of the acid.

(d) These are the student's results.

temperature of hydrochloric acid = 19.9 °C

maximum temperature of mixture = 26.5 °C

(i) Calculate the energy change, Q, in joules for this reaction.

[mass of $1.0 \, \text{cm}^3$ of mixture = $1.0 \, \text{g}$]

[for the mixture, c = 4.2 J/g/°C]

Q = mc DT = 100 (4.2) (26.5-19.9) = 2772 J

 $Q = \frac{2770}{(35161)}$

(2)

(3)

(ii) In the student's reaction between hydrochloric acid and sodium hydroxide, 0.050 mol of water forms.

Calculate the molar enthalpy change, ΔH , in kJ/mol for this reaction.

 $\Delta H = -\frac{Q}{N}$ $= \frac{2772 \times 10^{3}}{0.05}$ $= -55.44 \text{ W m/}^{3}$

 $\Delta H = \frac{-55.4}{(3.5)}$ kJ/mol (Total for Question 9 = 13 marks)

10 This question is about salts.
(a) Soluble salts can be prepared by the reaction between a metal oxide and an acid.
The equation for this type of reaction is
metal oxide + acid \rightarrow salt + water
(i) State the name given to this type of reaction.
Neutralisation.
(ii) State, in terms of protons, what happens in this reaction.
The aicid chandles profons which are accepted by the base.
(b) (i) A student is given 50 cm³ of dilute sulfuric acid and a bottle of solid copper(II) carbonate.
Describe the method that the student should use to prepare a saturated solution of copper(II) sulfate.
In your answer, refer to the pieces of apparatus that the student should use.
Ald (now (m) II) (apprete to the dilute Sulphic acid is a before
using a Spabula. Stir the mixture. Continue to add more
Add Copper (MII) Carbonate to the dilute Sulphine acid in a backer using a Spatiala. Stir the mixture. Continue to add more Copper (II) Sulphate intil no More Gizzin occurs. Filter the
mixture to remove the excess (oper (I) Cammibe before
until Crystals form. Fife the most the Shubish to Bobain the
desired Saturated Silution.

(ii) The student produces dry crystals of hydrated copper(II) sulfate from the saturated solution.

He calculates that 6.40 g of dry crystals should be formed.

The mass of dry crystals he actually obtains is 1.80 g less than he calculated.

Calculate the student's percentage yield.

Give your answer to one decimal place.

(3)

(c) (i) Gypsum is hydrated calcium sulfate.

A sample of gypsum contains 79% of calcium sulfate by mass.

Calculate the value of x in CaSO₄.xH₂O

$$[M_{\rm r} \, {\rm of} \, {\rm CaSO_4} = 136$$

$$M_{\rm r}$$
 of H₂O = 18]

mase 79

H20

100-79

= 0.588

. S80 : 1.16

Smallest 0.580 6.5

· X=2

x = ___2

(2)

(3)

(ii) Describe a test for calcium ions in the sample of gypsum.

Flame test

produces

Oranze -red

flame.

(Total for Question 10 = 15 marks)

TOTAL FOR PAPER = 110 MARKS

