Mark Scheme (Results)

January 2021
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4CH1_2C_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)(i)	D D is the correct answer because protons occur in the nucleus and have a positive charge. A is not the correct answer since electrons occur in the energy levels. B is not the answer since ions do not occur in the nucleus. C is not the correct answer since neutrons have no charge.	1	
	(ii)	7	ALLOW Li

Question number	Answer	Notes	Marks
2 (a) $\begin{aligned} & \text { (i) } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { (iii) }\end{aligned}$	nitrogen	ALLOW $\mathrm{N}_{2} / \mathrm{N}$	1
	carbon dioxide	ALLOW CO ${ }_{2}$	1
	argon	ALLOW Ar	1
	carbon dioxide	ALLOW CO ${ }_{2}$	1
(b)	lighted splint (produces squeaky) pop		1
			5 mark

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any two from: \\
M1 volume of acid \\
M2 temperature \\
M3 mass / moles of magnesium \\
M4 surface area / size of pieces of magnesium \\
so as little gas as possible escapes
\end{tabular} \& ALLOW so no gas escapes IGNORE references to accuracy REJECT references to gas getting in \& 2

1

\hline | (b) |
| :--- |
| (i) |
| (ii) | \& | $\text { M1 }(69+70+71) \div 3$ |
| :--- |
| M2 70s |
| as the (number of) carbons increases the time (to produce $10 \mathrm{~cm}^{3}$ of hydrogen) increases ORA | \& | Answer of 70 with or without working scores 2 |
| :--- |
| Answer of 76 or 75.8 or 75.75 with or without working scores 1 | \& \[

2
\]

$$
1
$$

\hline (c) \& | M1 ester linkage as a displayed structure |
| :--- |
| M2 rest of molecule correct as a fully displayed structure | \& \& 2

\hline \multicolumn{4}{|r|}{8 marks}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
2 \mathrm{Na}(\mathbf{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathbf{a q})+\mathrm{H}_{2}(\mathrm{~g})
\] \\
M1 correct balancing numbers \\
M2 (s) and (aq) for state symbols \\
hydroxide or OH \\
Any three from: \\
M1 the sodium moves (on the surface) \\
M2 effervescence or bubbles (of gas) \\
M3 (indicator or phenolphthalein or water) turns pink \\
M4 the sodium gets smaller \\
M5 the sodium melts or turns into a ball
\end{tabular} \& \begin{tabular}{l}
ALLOW multiples or fractions. \\
REJECT OH \\
ALLOW sodium floats \\
IGNORE gas or hydrogen produced \\
IGNORE initial colour of indicator \\
ALLOW the sodium disappears / (appears to) dissolve
\end{tabular} \& 2

1

3

\hline (b) \& | M1 electron configuration of sodium is 2,8,1 and electron configuration of potassium is $2,8,8,1$ |
| :--- |
| M2 outer electron less attracted (to the nucleus of potassium) |
| M3 therefore (outer shell electron) is more easily lost | \& | ALLOW the outer shell is further from the nucleus |
| :--- |
| ALLOW potassium has more shells |
| ALLOW larger atom / larger atomic radius |
| ALLOW reverse argument for sodium | \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (a) (i) \& \begin{tabular}{l}
M1 layers / rows (of atoms / ions) \\
M2 can slide over one another \\
M1 delocalised electrons \\
M2 can move / can flow / are free to move (throughout the structure)
\end{tabular} \& \begin{tabular}{l}
M2 is dependent on mention of layers / rows in M1 \\
IGNORE references to charge or current IGNORE free electrons M2 dependent on mention of electrons in M1
\end{tabular} \& 2

2

\hline (b) \& aluminium is more reactive than carbon \& ALLOW references to position in reactivity series e.g. aluminium is higher in reactivity series than carbon. ALLOW carbon is less reactive than aluminium \& 1

\hline (c) (i) \& | M1 aluminium / Al ${ }^{1+}$ ions are attracted to the negative electrode / cathode (because they are positively charged) |
| :--- |
| M2 where they gain electrons (forming aluminium) | \& ALLOW Al ${ }^{3+}+3 e^{-} \rightarrow \mathrm{Al}$ IGNORE references to reduction \& 2

\hline (ii) \& $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$ \& ALLOW $2 \mathrm{O}^{2-}-4 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}$ \& 1

\hline (iii) \& | M1 electrodes are made of carbon |
| :--- |
| M2 which reacts with / burns in oxygen | \& \& 2

\hline
\end{tabular}

(d) (i) (ii)	iron oxide loses oxygen \qquad M1 right hand line below left hand line M2 correct name / formula of both reactants M3 correct name / formula of both products	IGNORE references to electrons IGNORE horizontal axis drawn IGNORE activation energy if shown If only use words reactants (on left) and products (on right) award 1 mark from M2 and M3 M2 and M3 can be scored from an endothermic diagram	3

Question number	Answer	Notes	Marks
$\begin{array}{ll}\text { (c) } & \text { (i) } \\ \\ & \\ & \text { (ii) }\end{array}$	Any one from:		1
	burette	ALLOW measuring cylinder	
	(volumetric) pipette	REJECT beaker	
	Example calculation		3
	M1 moles of coper chloride $=(25 \times 0.50) \div 1000$ OR 0.0125 moles		
	M2 moles of silver chloride $=0.0250$	ALLOW answer to M1 $x 2$	
	M3 mass of silver chloride $=3.59 \mathrm{~g}$	ALLOW answer to M1 or M2 $\times 143.5$ ALLOW 2 or more significant figures	
		Correct answer of 3.59 g scores 3 marks	
(iii)	M1 $(0.744 \div 0.850) \times 100$		2
	M2 87.5(\%)	ALLOW 2 or more significant figures	
			15 marks

Question number	Answer	Notes	Marks
7 (a)	M1 crude oil is heated / vapourised M2 vapours / gases / compounds / hydrocarbons rise up the column M3 the column is hotter at the bottom than the top M4 vapours / compounds / hydrocarbons condense at their boiling point	ALLOW boiled ALLOW temperature gradient of the column ALLOW vapours / compounds/ hydrocarbons / condense at different heights ALLOW the vapours / compounds / hydrocarbons / fractions have different boiling points.	4
(b)	M1 temperature of $600^{\circ} \mathrm{C}-700^{\circ} \mathrm{C}$ M2 catalyst of silica / alumina	ALLOW aluminosilicates / zeolites / silicon dioxide / aluminium oxide IGNORE references to pressure	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M1 nitrogen (from the air) reacts / combines with oxygen (from the air) \\
M2 at high temperatures (in the car engine) \\
Any one from: \\
acid rain \\
respiratory problems \\
Example calculation \\
M1 volume of carbon dioxide \(=206000 \mathrm{~cm}^{3} /\) \\
\(2.06 \times 10^{5} \mathrm{~cm}^{3} / 206 \mathrm{dm}^{3}\) \\
M2 volume of carbon dioxide per \(\mathrm{km}=51500 \mathrm{~cm}^{3} /\) \(5.15 \times 10^{4} \mathrm{~cm}^{3} / 51.5 \mathrm{dm}^{3}\) \\
M3 \((51500 \div 24000)=2.15\) moles \\
M4 \(\mathrm{M}_{\mathrm{r}}\) of carbon dioxide is 44 \\
M5 mass of carbon dioxide per \(\mathrm{Km}=94.4 \mathrm{~g}\)
\end{tabular} \& \begin{tabular}{l}
REJECT any implication that oxygen or nitrogen come from the fuel. \\
Division by 4 can happen in M1, M2, M3 or M5 \\
ALLOW M1 \(\div 4\) \\
ALLOW M2 or \\
M1 \(\div 24000\) \\
ALLOW 94-95g ALLOW ecf from incorrect \(\mathrm{Mr}_{\mathrm{r}}\) \\
Correct answer of 94 95 g scores 5 marks.
\end{tabular} \& 2

1
1

5

\hline
\end{tabular}

