Mark Scheme (Results)

January 2021
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4CH1_2CR_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
2 (b) (ii)	explanation containing three of following points M1 bromine and chlorine react by gaining electron/forming 1 - or negative ion M2 bromine atom larger (than chlorine atom) M3 bromine (atom) has smaller/weaker attraction (from nucleus) for (outer shell) electrons (than chlorine) OWTTE M4 so (bromine has) less tendency to gain electron/form negative ion (so less reactive than chlorine) OWTTE	ALLOW bromine has larger atomic radius ALLOW bromine outer (electron) shell further from nucleus ALLOW bromine atom has more (electron) shells (than chlorine) ALLOW reverse argument for chlorine in M2 M3 M4	3
(c)	The correct answer is $\mathbf{D} \mathrm{K}^{+}$and Cl^{-}because both have electronic configuration of 2.8.8 A is not correct because Li+ does not have electronic configuration of 2.8.8 B is not correct because F^{-}does not have electronic configuration of 2.8.8 C is not correct because neither Li^{+}nor F^{-}have electronic configuration of 2.8.8		1

Question number	Answer	Notes	Marks
3 (d) (i)	(transfer of two/same number of electrons produces) one mole of chlorine/Cl L_{2} and one mole of hydrogen/ H_{2}	ALLOW same number of moles of chlorine $/ \mathrm{Cl}_{2}$ and hydrogen/ H_{2} ALLOW molecules for moles	1
(ii)	chlorine dissolves/soluble in acid/solution	ALLOW dissolves/soluble in water	

(Total for Question 3 = 13)

Question number	Answer	Notes	Marks
5 (a)	a catalyst is chemically unchanged at the end of the reaction	ALLOW (provides alternative route for reaction of) lower activation energy ALLOW not used up in reaction	1
(b)	description including six of the following points: M1 do experiment using hydrogen peroxide solution only/without X/Y/Z M2 use known volume of hydrogen peroxide solution OWTTE		6
	M3 (and) measure time for certain volume of oxygen gas to be collected OR measure volume of gas collected in a certain time period OWTTE	ALLOW measure time until no more oxygen produced	
	M4 repeat using same volume of hydrogen peroxide solution	ALLOW amount	
	M5 with known mass/amount of solid X (then Y, then Z)		
	M6 measure time for same volume of oxygen gas to be collected OR measure volume of gas collected in same time period (with solid/X/Y/Z present)		
	M7 after reaction (remove solid/X/Y/Z by filtration and dry) find mass of solid/X/Y/Z /check if mass unchanged	ALLOW reference to	
	M8 reference to reduced time (for certain volume of oxygen gas to be collected) OR increased volume of gas (collected in a certain time period) means X/Y/Z (possible) catalyst (1)	increased rate	

Question number	Answer	Notes	Marks
6 (c) (i) (ii) (iii)	$\begin{aligned} & \mathrm{M} 1 \mathrm{~mol}(\mathrm{KOH})=\frac{0.0370 \times 25}{1000} \\ & \mathrm{M} 2=9.25 \times 10^{-4} / 0.000925 \end{aligned}$ M2 from (i) divided by 2 expected answer $4.625 \times 10^{-4} / 0.0004625$ M1 answer to $\frac{(i i) \times 1000}{21.20}$ M2 correctly evaluated expected answer if (i) and (ii) correct 0.0218	ALLOW any number of sig fig except one If no division by 1000 giving answer of 0.925 award 1 mark correct answer with no working scores 2 ALLOW any number of sig fig except one ACCEPT any number of sig fig except one (unless ECF answer is exactly 1 sig fig) correct answer with no working scores 2	2

(Total for Question $6=10$)

Question number	Answer	Notes	Marks
7 (a)	M1 use of amount in moles = volume of gas molar volume		2
	M2 correct evaluation		
	Example calculation		
	$\begin{array}{r} \text { M1 amount in moles }=600 \\ 24000 \end{array}$		
	$\mathrm{M} 2=0.025$ (mol)	0.025 with no working scores 2 REJECT 0.03 for M2	
(b)	M1 statement/use of amount in moles $=$ mass		2
	M2 substitution and correct evaluation:		
	$M r=\frac{1.45}{0.025}=58$		
(c)	molecular formula $=\mathrm{C}_{4} \mathrm{H}_{10}=(4 \times 12)+(10 \times 1)=58$		1
	```OR alkane general formula = C }\mp@subsup{\textrm{n}}{2}{}\mp@subsup{\textrm{H}}{2+2}{ so M1 (n\times12) + (2n+2)x1 = 58 so 14n=56```		
	$\mathrm{M} 2 \mathrm{n}=4$ so $\mathrm{C}_{4} \mathrm{H}_{10}$		
			1
(d)			

(Total for Question $7=6$ )

Question number	Answer	Notes	Marks
8 (a) (i)   (ii)	$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$   M1 moist/damp red litmus paper   M2 turns blue	ALLOW moist/damp universal indicator paper	1 2
(b)(c)	an explanation linking following two points:	ACCEPT reaction is taking place in both directions at same rate   REJECT concentrations of the reactants and products are equal/the same	2
	M1 forward and backward/reverse reactions are taking place at same rate		
	M2 the concentrations of reactants and products remain constant		
	an explanation linking following two points:		2
	M1 as temperature decreases yield of ammonia (formed in forward reaction) increases	ALLOW as temperature decreases equilibrium position shifts in forward direction/(from left) to right (producing more ammonia)	
	M2 so forward reaction is exothermic	IGNORE references to pressure ALLOW reverse arguments	
		IGNORE references to Le Chatelier's Principle	
		M2 DEP M1	

(Total for Question 8 = 7)

