MODEL ANSWERS

Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International GCSE (9–1)	tre Number Candidate Number
Thursday 14 Jar	nuary 2021
Morning (Time: 1 hour 15 minutes)	Paper Reference 4CH1/2CR
Chemistry	
Unit: 4CH1	8
Paper: 2CR	
You must have: Calculator, ruler	Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ☒. If you change your mind about an answer, put a line through the box 🔀 and then mark your new answer with a cross ⋈.

Information

- The total mark for this paper is 70.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P67082A ©2021 Pearson Education Ltd.

The Periodic Table of the Elements

He Hellum	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
	19 . F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
	16 O oxygen 8	32 S sulfur 16	79 Se setenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated
	12 C carbon 6	28 . Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb	mic numbers a
	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI Ihallium 81	Elements with atomic numbers 112–116 have been reported but not fully authenticated
			65 Zn ^{zinc} 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
			59 Co coball 27	103 Rh rhodium 45	192 Ir indium 77	[268] Mt meitnerium 109
1 Hydrogen			56 iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrum 107
	mass ɔol ıumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	Sg seaborgium 106
Key	ve atomic omic syml oame (proton) n		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relati atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
	7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87
	H hydrogen	Key relative atomic mass atomic symbol 11 12 14 16 19 Be atomic symbol atomic (proton) number Be atomic (proton) number A A O F 4 4 6 7 8 9	Key H hydrogen 1 Be atomic mass Be atomic symbol number 4 4 relative atomic mass atomic (proton) number atomic (proton) number 12	1	Harmonic symbol Standard and Charles St	Harmonic mass Harmonic mas

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

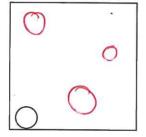
Answer ALL questions.

- 1 Substances can exist as solids, liquids or gases.
 - (a) (i) Give the change of state that occurs when a substance melts.

from Solid to Liquid.

(1)

(ii) Complete the word equation for the sublimation of iodine.


iodine (s)
$$\rightarrow$$
 iodine (....)

(1)

(b) The circle in the diagram represents a particle.

Complete the diagram to show the arrangement of particles in a gas.

(1)

(c) The table lists some statements about particles.

Place ticks (\checkmark) in boxes to show which two statements are correct for water particles.

(2)

Statement	Tick
the particles only vibrate	
the particles do not move	
the particles have no gaps between them	
the particles move randomly	
the particles have more energy than in ice	
the particles have a regular arrangement	The second section of

(Total for Question 1 = 5 marks)

2 This question is about elements in Group 7 and their compounds.

The table gives information about some of these elements.

Element	Symbol	Melting point in °C	Boiling point in °C	Colour at room temperature (20°C)
fluorine	F	-220	-188	
chlorine	Cl	-101	-35	pale green
bromine	Br	-7	59	red-brown
iodine	Ι	114	184	grey

(a)	(i)	Predict the colo	ur of fluorine at room	temperature.
-----	-----	------------------	------------------------	--------------

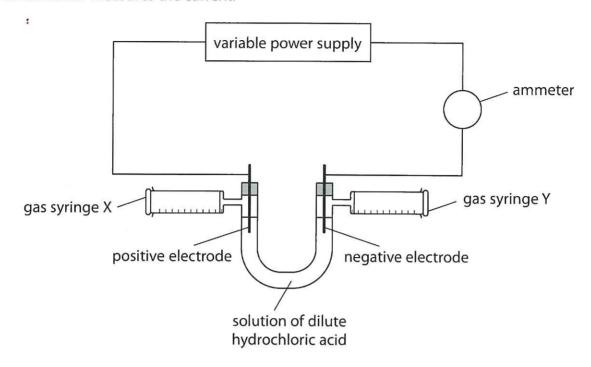
(1)

- (ii) How many of the elements in the table are liquids at room temperature (20°C)?
 - (1)

- □ A 0
- 🔼 B 1
- □ C 2
- □ **D** 3
- (iii) The element astatine is below iodine in Group 7.

Predict the formula of a molecule of astatine.

(1)



3 (a) Explain why relectricity.	netals conduct electric	ity but covalen	t compounds do	o not conduc	ct
Metals Conda	et delocation	lections	Which Can	move, so	t Cen
Corduct Cleck					
Colalent Milecula	s have no ove	rus Charge	and the	Clechons (Jenna mare
So they do	s have no ove "t Corduct ll	econcity.			
		J			
(b) Hydrogen chl	oride, HCl, is a covalen	t substance.			
When hydrog is formed.	en chloride is added to	o water, a solutio	on of dilute hyd	rochloric aci	d
This solution	loes conduct electricit	cy.			
(5)(5)	e of particle in the solunduct electricity.	ution of the dilu	te hydrochloric	acid that	
lons					(1)
				recoveracy (4.50) (AddS (4.550) (2007) 1500	MARTER HEROMOTO 25118020302000005000000000000000000000000000

(c) The teacher uses this apparatus to investigate the electrolysis of a solution of dilute hydrochloric acid.

The ammeter measures the current.

The teacher wants to find out if there is a relationship between current and volume of gas collected at each electrode.

She adjusts the power supply until the current is 0.1 amp.

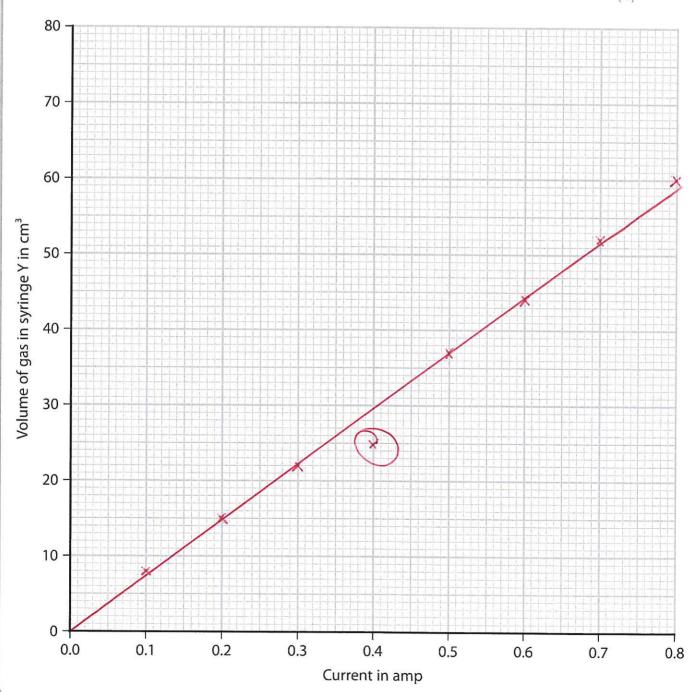
After 5 minutes she records the volume of gas collected in syringe X and syringe Y.

The teacher repeats the experiment several times, using a different current each time.

The table gives the teacher's results for syringe Y.

Current in amp	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Volume of gas in cm ³	8	15	22	25	37	44	52	60

(i) Plot the results for syringe Y.


(1)

(ii) Draw a circle around the anomalous result.

(1)

(iii) Draw a line of best fit.

(1)

(iv) Explain a possible cause of the anomalous result,	other than misreading the
apparatus.	_

The Volume reading is less than expected as the Current was actually less than 0-4A or some gas escaped.

(v) Deduce the relationship between current and volume of gas collected in syringe Y.

Greater the Current, the greater the Volume of gas.

(d) The ionic half-equation for the reaction that produces the gas in syringe X is

$$2Cl^- \rightarrow Cl_2 + 2e^-$$

The ionic half-equation for the reaction that produces the gas in syringe Y is

$$2H^+ + 2e^- \rightarrow H_2$$

(i) Suggest how these ionic half-equations show that the volume of chlorine collected in syringe X should be the same as the volume of hydrogen collected in syringe Y.

The barsfer of two moles of electrons produces one mole of Ozogano one mole of H2(g)

(ii) Suggest why the volume of chlorine collected in syringe X is always less than the volume of hydrogen collected in syringe Y.

Chlorine dissilves into the acid.

(Total for Question 3 = 13 marks)

- This question is about alcohols, carboxylic acids and esters.
 - (a) The table gives information about some alcohols.

Alcohol	Structural formula	Relative formula mass
methanol	CH₃OH	32
ethanol	C₂H₅OH	46
Butarol	C ₄ H ₉ OH	74

Complete the table by giving the missing information.

(2)

- (b) Ethanol can be oxidised to ethanoic acid by heating with potassium dichromate(VI) and another reagent.
 - (i) Name the other reagent.

(1)

(ii) State the colour change that occurs during this reaction.

(1)

Grange to green

- (c) Alcohols react with carboxylic acids to form esters.
 - (i) Name the ester that forms when ethanol reacts with ethanoic acid.

(1)

(ii) Complete the equation for the reaction between methanol and ethanoic acid.

CH3 COOH → CH3 COO CH3 + H20

(Total for Question 4 = 7 marks)

5 Hydrogen peroxide solution decomposes slowly at room temperature to form water and oxygen.

The equation for the reaction is

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

(a) A catalyst increases the rate of this reaction.

State one other property of a catalyst.

A Catalyst is Chemically unchanged at the end of the reaction.

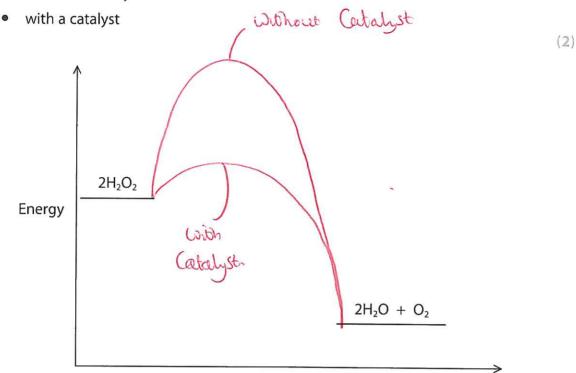
(b) A student has samples of three solids, X, Y and Z.

The student uses this apparatus to find out which solids act as catalysts in the decomposition of hydrogen peroxide solution.

hydrogen peroxide solution

O 20 40 60 80 100

Oxygen


Describe the method that the student should use to find out which solids act as catalysts.
(6)
Do the experiment first using only 1/202 and no X, Yor Z.
Ensure a known Whene of M2O2 Shubion is used, measing the time taken
for a Cefain Volume 9 gas to be Collected.
Repeat this using the Same Volume of M2O2 Solution but with
a known ress of Solid X before repeating with 4, then Z.
After the reaction, filter and dry the solid from the reaction mixture,
Checking to see if the mass of the Solid is unchanged.
If X, Y, or 2 may be a Catalyst, the time baken for a fixed
Whene of gers to be produced must be reduced when the Cabalyst is used.

(c) The decomposition of hydrogen peroxide solution is exothermic.

On the diagram, draw and label the reaction profiles for the reaction

without a catalyst

Progress of the reaction

(d) The equation for the reaction can be shown using displayed formulae.

$$2H-O-O-H \rightarrow 2H-O-H + O=O$$
 $\Delta H = -204 \text{ kJ}$

The table gives the bond energies for two of the bonds.

Bond	Bond energy in kJ/mol
Н—О	463
0—0	146

(i) Use this information to calculate the total amount of energy needed to break all the bonds in two moles of $\rm H_2O_2$

Energy = 4 (463) +2(146) = 2144 KJ

(1)

(1)

(2)

(ii) Use this information to calculate the total amount of energy released when all the bonds in two moles of H_2O are formed.

(iii) Use the value of ΔH and your answers for (i) and (ii) to calculate the bond energy, in kJ/mol, for the O=O bond.

bond energy = 496

(Total for Question 5 = 13 marks)

6 A student does a titration using dilute sulfuric acid to find the concentration of a solution of potassium hydroxide.

The student adds 25.0 cm³ of the potassium hydroxide solution to a conical flask. He then adds a few drops of methyl orange indicator.

The student does the titration four times.

(a) (i) Name the piece of apparatus the student should use to add the potassium hydroxide solution.

P: pette

(1)

(ii) What is the colour of methyl orange in an alkaline solution?

(1)

- ☐ **A** blue
- ☐ **B** orange
- ☐ **C** red
- D yellow

(b) The table shows the student's results.

titration	1	2	3	4
volume of acid added in cm ³	20.65	20.60	20.90	20.55
concordant results		/		1

Concordant results are those within 0.20 cm³ of each other.

(i) Place ticks (✓) in the table to show which results are concordant.

(1)

(ii) Use the concordant results to calculate the mean (average) volume of acid added.

Mean = ?

20,65 + 20.60+20.55

(2)

= 70.60

mean volume =

(c) This table shows the student's results for another titration.

volume of potassium hydroxide solution used in cm ³			
concentration of potassium hydroxide solution in mol/dm ³	0.0370		
mean volume of sulfuric acid added in cm ³	21.20		

The equation for the reaction is

$$2KOH + H2SO4 \rightarrow K2SO4 + 2H2O$$

Calculate the amount, in moles, of KOH in 25.0 cm³ of the potassium hydroxide solution.

$$n(koH) = Cone xvd$$

= 0.0370 x 25 x vo³
= 9.25 x vo⁴

9. 25xin4 ... amount of KOH =

(2)

(1)

(2)

(ii) Calculate the amount, in moles, of H₂SO₄ in 21.20 cm³ of sulfuric acid.

amount of H₂SO₄ = 4.625 x 54

(iii) Calculate the concentration, in mol/dm³, of the sulfuric acid.

$$Conc = \frac{md}{VSI} = \frac{4.625 \times 10^{4}}{21.2 \times 10^{3}}$$

= 0.0216

concentration of sulfuric acid = _____ mol/dm³ (Total for Question 6 = 10 marks)

(2)

(2)

(1)

(1)

- A sample of a gaseous hydrocarbon, X, has a volume of 600 cm³ at room temperature and pressure (rtp).
 - (a) Calculate the amount, in moles, of hydrocarbon X in the sample.

[molar volume of a gas = $24\,000\,\text{cm}^3$ at rtp]

$$md = \frac{600}{24000} = 0.025 md$$

amount of hydrocarbon X =

(b) The mass of the sample of hydrocarbon X is 1.45 g.

Show that the relative molecular mass (M_r) of X is 58

$$mr = \frac{mass}{md} = \frac{1.45}{0.025} = 58$$

(c) Hydrocarbon X is an alkane.

Show that the molecular formula of X is C_4H_{10} $X: C_nH_{2n^2}$ $58 = 12n + (2n^2)$

(d) Give the displayed formula of the branched-chain isomer of hydrocarbon X.

(Total for Question 7 = 6 marks)

- 8 This question is about ammonia gas, NH₃
 - (a) Ammonia can be prepared in a laboratory from the reaction between ammonium chloride, NH₄Cl, and sodium hydroxide. The other products of the reaction are sodium chloride and water.
 - (i) Give a chemical equation for this reaction.

NH40 + NaOH - NaCI +NH3 + H20

(1)

(ii) Give a test for ammonia gas.

(2)

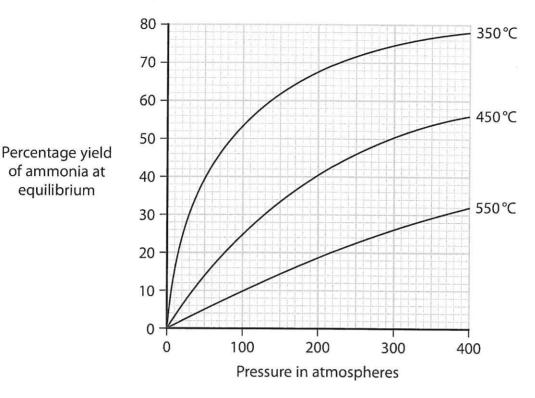
Ammonia gas turns damp sed literus paper blue.

(b) In industry, ammonia is produced from nitrogen and hydrogen.

The equation for this reaction is

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

In a sealed container, the reaction can reach a position of dynamic equilibrium.


Explain the meaning of the term dynamic equilibrium.

When the rate of the forwards reaction is equal to that of the reverse reaction and the Concentrations of reactions and products clon't Charge.

of ammonia at

equilibrium

(c) The graph shows the percentage yield of ammonia at equilibrium for different temperatures and pressures.

Using the graph, explain if the forward reaction is exothermic or endothermic.

Increasin,	to	novabire	deCreases	the	yield	q	anmonia	5	th.	Lonward
reaction	is	6xothum; c			O					

(Total for Question 8 = 7 marks)

(TOTAL FOR PAPER = 70 MARKS)

