

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Question Paper Log Number P66058RA Publications Code 4CH1_1C_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	A A is the correct answer because A contains one element and the atoms are not joined to other atoms.		1
	 B is incorrect because B contains molecules of an element. C is incorrect because C contains molecules of a compound D is incorrect. D contains an element but the atoms are joined together to form a giant covalent structure. 		
(ii)	C C is the correct answer because C contains atoms of two different elements chemically bonded together.		1
	A is incorrect because A is an element. B is incorrect because B is an element. D is incorrect because D is an element.		
(iii)	${\bf B}$ B is correct because B shows two atoms of the same element chemically bonded together e.g. ${\rm H}_2$		1
	A is incorrect because A contains atoms of an element C in incorrect because C contains molecules of a compound with the formula e.g. H ₂ O D is incorrect because C contains a giant covalent structure that could have the formula C		
(b)	M1 two different elements	ALLOW two different types of/sizes of atom.	2
	M2 not (chemically) joined / (chemically) bonded together		
			5

Question number	l	Answer	Notes	Marks
2 (a)	(i) (ii)	fluorine has the fewest number of shells / energy levels	ALLOW fluorine has the fewest number of electrons IGNORE references to protons, neutrons, atomic number and mass number	1
		C is the correct answer because iodine is in period 5 therefore has 5 shells and group 7 therefore has 7 electrons in its outer shell. A is incorrect because arsenic has 5 shells and 4 electrons in its outer shell. B is incorrect because selenium has 4 shells and 6 electrons in its outer shell. D is incorrect because the number of shells and number of electrons in the outer shell in iodine have been reversed.		
(b)	(i)	M1 does not need heating M2 reacts very quickly	must imply quicker reaction than chlorine	2
	(ii)	M1 as the atoms get bigger M2 the reactivity decreases	ACCEPT reverse argument	2
				6

number	n	Answer	Notes	Marks
3 (a)	(i)	oxygen	IGNORE air ACCEPT O ₂	1
	(ii)	(hydrated) iron (III) oxide	ALLOW iron oxide /ferric oxide REJECT incorrect	1
(b)	(i)	M1 plastic acts as a barrier	oxidation states of iron	2
(5)	(1)		protective layer	
		M2 therefore stops oxygen / water getting to the iron	ALLOW air in place of oxygen	
	(ii)	galvanising	ALLOW sacrificial protection	1
			IGNORE sacrificial method	
	(iii)	M1 zinc is more reactive than iron /higher in the reactivity series than iron		2
		M2 therefore reacts / oxidises / corrodes in preference to iron	IGNORE references to rates of reaction	
			REJECT references to zinc rusting	
				7

Question number		n	Answer	Notes	Marks
4	(a)	(i)	14		1
		(ii)	2.5	REJECT any charge shown	1
				IGNORE brackets	
		(iii)	M1 same number of protons	IGNORE references to numbers of electrons	2
			M2 different numbers of neutrons		
		(iv)	M1 (three) more electrons than protons	REJECT incorrect numbers of electrons	2
			M2 electrons have a negative charge and protons have a positive charge		
	(1)				
	(D)		M1 $(98.930 \times 12) + (1.070 \times 13) \div 100$		Z
			M2 12.01	ALLOW 1 mark for 1201.07 if not divided by 100 as long as given to 2dp	
				correct answer to 2	
				decimal places with or without working scores	
				z mants.	8

Question number	Answer	Notes	Marks
5 (a)	Any one from:		1
	M1 add more limewater (to cover tube on left)		
	M2 the glass tube on the left should be longer/in the limewater		
(b) (i)	M1 volume of carbon dioxide = 10 (cm ³)		2
	M2 10÷76 × 100 = 13.2 (%)	correct answer with or without working scores 2 marks.	
		ACCEPT any number of significant figures except 1	
		REJECT incorrect rounding	
		ALLOW ecf on incorrect volume of carbon dioxide	
		ALLOW 66/76 x 100 = 86.8 for 1 mark	
(ii)	limewater turns (from colourless to) cloudy or milky	ALLOW white precipitate	1
(iii)	M1 the percentage/amount of carbon dioxide in the air is too small	ALLOW there is 0.04% of carbon dioxide in the air	2
	M2 therefore the reading on the syringe would change by less than 1 cm ³	ALLOW the change on the gas syringe would be too small	
		ALLOW syringe not precise/accurate enough to measure small volume changes	

Question number		on	Answer	Notes	Marks
5	(C)	(i)	copper(II) oxide	ALLOW copper oxide /CuO	1
				REJECT copper (I) oxide	
		(ii)	the powder has a greater surface area (than larger pieces of copper)	ALLOW the powder reacts more quickly (than larger pieces of copper)	1
		(iii)	M1 argon/it has a full outer shell of electrons	ALLOW has eight outer shell electrons	2
			M2 therefore does not lose or gain (or share) electrons		
					10

Question number	Answer	Notes	Marks
6 (a) (i)	Y		1
(ii)	v		1
(iii)	w		1
(iv)	X		1
(v)	displayed formula of but-1-ene or methylpropene		1
(vi)	Any two from		2
	M1 same general formula	ALLOW same empirical formula	
	M2 similar chemical properties	ALLOW they react in a similar way/same chemical properties	
	M3 trend in physical properties	ACCEPT named physical property e.g. trend in boiling points	
	$\textbf{M4}$ each consecutive member differs by a CH_2group		
(b) (i)	M1 <u>38.7</u> <u>9.7</u> <u>51.6</u> 12 1 16	0 marks if upside down calculation or use of atomic numbers	2
	OR 3.225 9.7 3.225		
	M2 (divide by smallest) 1 3 1		
(ii)	M1 Mr of CH ₃ O = 31	$C_2H_6O_2$ without working	2
	M2 (62 ÷ 31 = 2 so molecular formula is) $C_2H_6O_2$	scores Z	
			11

Question number	Answer	Notes	Marks
7 (a) (i)	$N_2 + O_2 \rightarrow 2NO$	ALLOW fractions and multiples IGNORE state symbols,	1
(ii)	the reaction has a high activation energy $/ E_{\rm c}$	even if incorrect	1
()		reactants enough energy to react	
		is required to break the bonds in the reactants	
		ALLOW nitrogen is unreactive	
(iii)	acid rain	ACCEPT references to respiratory problems	1
		ALLOW a specific harmful effect of acid rain	
		ALLOW references to smog	
		ALLOW references to greenhouse gases / global warming / climate change	
		ALLOW toxic	
(b) (i)	M1 catalyst provides an alternative reaction route/ pathway		2
	M2 with lower activation energy		
(ii)	M1 particles / molecules are closer together	ACCEPT more particles in a smaller volume (space	3
	M2 therefore more collisions		
	M3 per unit time	more frequent collisions scores M2 and M3	
		any reference to increasing energy max = 1	

(c) (i)	M1 one pair of electrons between the nitrogen and each hydrogen		2
	M2 two non-bonding electrons on the nitrogen	M2 dep on M1	
	HNX		2
(ii)	M1 (electrostatic) attraction between nuclei	nuclei must be plural	
	M2 and shared pair(s) of electrons	ALLOW bonding pair(s) of electrons	
	OR		2
	M1 (electrostatic) attraction between shared pair(s) of electrons	ALLOW bonding pair(s) of electrons	
	M2 and nuclei (of both atoms)	nuclei must be plural	
(iii)	M1 forces between molecules/intermolecular forces (of attraction) are weak	ALLOW intermolecular bonds are weak	
	M2 and therefore require little energy to overcome	IGNORE less energy	
		Mention of breaking covalent bonds = 0	
			14

Question number	Answer	Notes	Marks
8 (a)	Any six from:		6
	M1 add barium carbonate (one spatula at a time) to the acid		
	M2 until the barium carbonate is in excess	ALLOW until some barium carbonate is left/no longer effervesces /fizzes/bubbles	
	M3 filter off the excess barium carbonate	M3 dep on M2	
	M4 heat solution to evaporate some of the water	ALLOW heat until crystals start to form	
		ALLOW heat until solution is saturated	
		ALLOW heat until crystals form on the end of a glass rod/heat to crystallisation point	
	M5 cool or leave to crystallise		
	M6 filter the crystals (from the solution)	M6 dep on M5	
		IGNORE washing	
	M7 leave crystals in a warm place to dry	ALLOW leave to dry	
		ALLOW dry on filter paper	
		ALLOW dry in a desiccator	
		ALLOW dry in a (warm) oven	
		If solution is evaporated to dryness M5 , M6 and M7 cannot be scored	
(b)	M1 add (dilute) acid before adding the barium chloride	ALLOW any named acid except sulfuric acid	2
	M2 white precipitate	M2 is dependent on M1	
	1		8

Question number		on	Answer	Notes	Marks
9	(a)	(i)	M1 and M2 all points correctly plotted to the nearest half a square	deduct 1 mark for each error	2
		(ii)	smooth curve of best fit		1
		(iii)	An explanation that links any two of the following points		2
			M1 polystyrene is an insulator		
			M2 reduces thermal energy/heat coming in from the surroundings OWTTE		
			M3 temperature decrease will be closer to true value OWTTE	ALLOW results will be more accurate	
		(iv)	Any one from:		1
			M1 the student recorded the temperature before adding the sodium carbonate /the temperature had not stopped decreasing OWTTE	ALLOW less than 0.5 g of/not enough sodium carbonate was added	
			M2 the student forgot to the stir the mixture		
		(v)	(two) results at the end are the same	ALLOW the temperature stops decreasing	1
		(vi)	An explanation that links together		2
			M1 the reaction is endothermic	REJECT exothermic for	
			and either of the following points	both marks	
			M2 it takes in thermal energy/heat from the surroundings		
			OR		
			M3 as shown by the temperature decrease (of the reaction mixture)	ALLOW references to cooling	
				No M2 or M3 if the statements contradict one another	

Question number	Answer	Notes	Marks
9 (b) (i)	to prevent acid / liquid / solution splashing out		1
(ii)	M1 (M_r of sodium carbonate) = 106		3
	M2 (moles of sodium carbonate 2.12 ÷ 106 =) 0.02	ALLOW ecf from M1	
		M2 subsumes M1	
	M3 (mass of carbon dioxide 0.02 × 44 =) 0.88 (g)	ALLOW answer from M2 x 44	
		answer of 0.88 (g) with or without working scores 3	
(iii)	Any one from:		1
	M1 the sodium carbonate is impure		
	M2 some of the carbon dioxide dissolves in the acid/solution		
			14

Question number		Answer	Notes	Marks
10 (a)	(i)	fractional distillation	ALLOW distillation	1
			REJECT simple distillation	
	(ii)	evaporation	ALLOW evaporating /boiling	1
	(iii)	condensation	ALLOW condensing	1
(b)	(i)	M1 (mass ethanol 15.50 × 0.79 =) 12.245 (g)		2
		M2 (moles ethanol = 12.245 ÷ 46 =) 0.266 (mol)	ALLOW any number of significant figures except 1	
		OR	ALLOW ecf from M1	
		M1 (1 cm ³ ethanol = 0.79 ÷ 46 =) 0.0172 mol		
		M2 (15.5 cm ³ ethanol = 0.0172 × 15.5 =) 0.267 (mol)	ALLOW any number of significant figures except 1	
			ALLOW ecf from M1	
			correct answer with or without working scores 2.	
	(ii)	answer from (b)(i) × 6 × 10^{23} e.g. (0.266 × 6.0 × 10^{23} =) 1.60 × 10^{23}	ALLOW any number of significant figures except 1	1
			ALLOW answer in ordinary form	

Question number		Answer	Notes	Marks
10 (c	c) (i)	M1 add anhydrous copper sulfate	ALLOW add white copper sulfate	2
		M2 turns blue	M2 dependent on M1	
			ALLOW	
			M1 add anhydrous cobalt chloride/ cobalt chloride/ paper	
			M2 turns pink	
			M2 dependent on M1	
				2
	(ii)	M1 measure boiling point		2
		M2 is 100°C	ALLOW molting (free-ring	
			point is 0°C for both marks	
10 (d	d) (i)	M1 ΔT = 49.5°C	correct answer with or	3
			without working scores 3	
		M2 Q = mcΔT OR 100 × 4.2 × 49.5	ALLOW ecf from M1	
		M3 20 790 J	ALLOW 20 800	
	(ii)	M1 20.790 kJ	ALLOW answer to 10(c)(i) ÷ 1 000	2
		M2 (20.790 ÷ 0.0200 =) -1039.5 (kJ/mol)	ALLOW any number of significant figures from 3	
			ALLOW M1 ÷ 0.0200 as long as answer is negative.	
			REJECT incorrect rounding.	
			REJECT positive answer.	
				15

Question number		1	Answer	Notes	Marks
11	(a)	(i)	displacement	ALLOW redox	1
		(ii)	(manganese) chromium cadmium tin		1
	(b)		(copper and magnesium sulfate)		5
			M1 no colour change		
			M2 copper is less reactive than magnesium ORA /copper cannot displace magnesium	ALLOW copper is below magnesium in the reactivity series ORA	
				IGNORE copper and magnesium sulfate do not react	
				M2 dep on M1	
			(zinc and iron sulfate)		
			M3 zinc turns (from light grey to) dark grey	ALLOW zinc becomes coated in a dark grey metal	
			M4 solution turns (from green to) colourless		
			M5 zinc is more reactive than iron ORA/ zinc displaces iron	ALLOW zinc is above iron in the reactivity series ORA	
				ALLOW zinc reduces iron ions (ignore charge given as long as the charge is positive)	
	(c)	(i)	Any two from		2
			M1 concentration of dilute sulfuric acid		
			M2 temperature		
			M3 surface area of the metal	ALLOW size of piece of metal	
		(ii)	calcium sulfate forms a layer / coating around the calcium metal	ALLOW calcium sulfate prevents the sulfuric acid coming into contact with calcium.	1

(d)	M1 (moles of aluminium =) 1÷27 OR 0.0370 moles	ALLOW any number of significant figures except 1	2
	M2 (moles of sulfuric acid required = $\frac{0.0370 \times 3}{2}$ =)		
	0.0556 moles (and there is more moles of sulfuric acid)	ALLOW 0.0555 if candidate has used rounded value of 0.0370 moles	
	OR		
	M1 (moles of aluminium required =) 0.0400		
	M2 (mass of aluminium required = $27 \times 0.0400 =$) 1.08 g (and there is less than 1.08 g)		
			12

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom