Please check the examination deta	ils below before enterin	ng your candidate information
Candidate surname	C	Other names
Pearson Edexcel International GCSE (9–1)	Centre Number	Candidate Number
Time 2 hours	Paper reference	4CH1/1C 4SD0/1C
Chemistry		
Science (Double Award PAPER: 1C) 4SD0	
NOVEMBER 2	.021	
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66058RA
©2021 Pearson Education Ltd.

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36
7	19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35
Q	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34
Ŋ	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32
ო	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31
			65 Zn zinc 30
			63.5 Cu copper 29
			59 nickel 28
,	8		59 Co cobalt 27
T hydrogen	s		56 Fe iron 26
			55 Mn manganese 25
	mass bol number		52 Cr chromium 24
Kev	relative atomic mass atomic symbol name atomic (proton) number	1 1, 3	51 V vanadium 23
	relati atc atomic		48 Ti titanium 22
			45 Sc scandium 21
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20
~	7 Li lithium 3	23 Na sodium 11	39 K potassium 19

		_		Ü
	59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt methorium 109
	56 iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
	55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
. 3	51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
5	45 Sc scandium 21	89 ×	139 La* lanthanum 57	[227] Ac* actinium 89
magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

[222] **Rn** radon 86

[210] **At** astatine 85

Po Po polonium 84

209 **Bi** bismuth 83

207 **Pb** lead 82

204 **T** thallium 81

201 **Hg** mercuny 80

197 Au gold 79

195 **Pt** platinum 78 Elements with atomic numbers 112–116 have been reported but not fully

Rg roentgenium

[271] **Ds**darmstadtium
110

authenticated

131 ×enon 54

127 iodine 53

128 **Te** tellurium 52

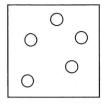
122 Sb antimony 51

S [⊕] 8

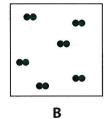
115 **a** indium 49

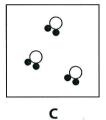
Cd Cadmium 48

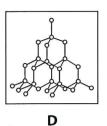
108 Ag silver 47


106 Pd palladium 46 * The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.




Answer ALL questions.


1 (a) The diagram shows the particles in four substances, A, B, C and D.

A

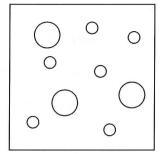
(i) Which substance contains single atoms of one element?

(1)

- X A
- □ В
- □ C

(ii) Which substance is a compound?

(1)


- _ A
- □ В
- X C
- D

(iii) Which substance could have the formula H₂?

(1)

- □ A
- ⊠ B
- □ C
- D

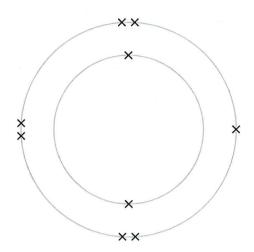
(b) The diagram shows the particles in substance E.

E

Give two reasons why substance E is a mixture.

two different elements

(2)


2 not Chenically Jo

Toine

(Total for Question 1 = 5 marks)

- 2 This question is about Group 7 elements and their reactions.
 - (a) Fluorine has the smallest atoms in Group 7.

The diagram shows the electronic configuration of a fluorine atom.

(i) State why fluorine has the smallest atoms in Group 7.

has the fewest number of shells

(ii) Which row gives the correct number of occupied electron shells and the correct number of outer shell electrons in an atom of iodine?

Use the Periodic Table on page 2 to help you.

(1)

(1)

		Number of occupied electron shells	Number of outer shell electrons
	Α	4	5
7	В	5	6
X	C	5	7
1	D	7	5

(b) (i) The table gives descriptions of the reactions of some Group 7 elements with iron wool.

Complete the table by giving a description of the reaction of fluorine with iron wool.

Element	Description of reaction with iron wool
fluorine	· does not react y need hearting. · reacts very a, n i(t/x
chlorine	does not need heatingreacts quickly
bromine	needs heatingreacts slowly
iodine	needs heatingreacts very slowly

(ii) State the relationship between the reactivity of the Group 7 elements and the size of their atoms.

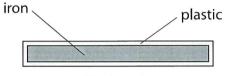
as the atoms get bigger

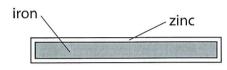
(Total for Question 2 = 6 marks)

(2)

- **3** This question is about the rusting of iron.
 - (a) Water is needed for iron to rust.
 - (i) Name one other substance needed for iron to rust.

(1)


U X Y GON


(ii) Give the chemical name for rust.

iron(III) oxide

(1)

(b) The diagram shows two methods used to prevent iron from rusting.

Method A

Method B

Method A will only work if the plastic coating is not damaged.

Method B will work even when the zinc coating is damaged.

(i) Explain how method A prevents iron from rusting.

(2)

plastic acts as a barrier

there fore Stops Oxygen getting to the Iron

(ii) Give the name of method B.

(1)

gal vanising

	plain how damaged.	method B	prevents irc	on from ru	usting even wh	en the zinc coa	ating	
ZINC	15 N	ore	reac-	tive	than	Iran	(2)	
nere	fore	Play	cts in	pr	re fever C	'e		
					(Total for	Ouestion 3 =		

4 (a) The table shows the number of protons, neutrons and electrons in species F, G and H.

	Species F	Species G	Species H
number of protons	7	7	7
number of neutrons	7	8	7
number of electrons	7	7	10

1.1	~ ·	- 1		•	•	_
(1)	Give	the	mass	number	of	Η.

14

(1)

(1)

(ii) Give the electronic configuration of G.

2,5

(iii) Explain why F and G are isotopes of the same element.

Refer to subatomic particles in your answer.

(2)

Same number of protons

different number of protons

(iv) Explain why H is a negative ion.

Refer to subatomic particles and their charges in your answer.

(2)

more electrons than protons

end protons have regative charge

(b) A sample of carbon contains atoms of mass number 12 and 13

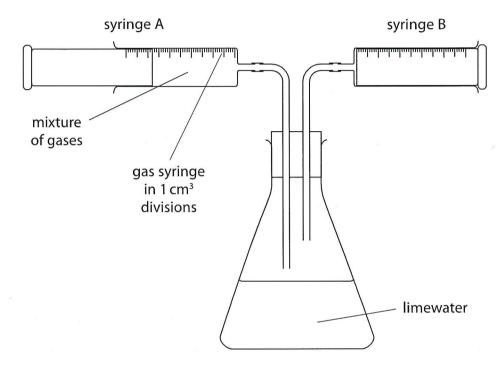
The table shows the percentages of these atoms in the sample.

Mass number	Percentage (%)			
12	98.930			
13	1.070			

Calculate the relative atomic mass (A,) of this sample of carbon.

Give your answer to two decimal places.

 $\frac{(98.930\times12)+(1.070\times13)}{108}$


(2)

relative atomic mass = 12.

(Total for Question 4 = 8 marks)

- 5 Two experiments are done to determine the percentage composition by volume of a mixture of three gases, carbon dioxide, oxygen and argon.
 - (a) In experiment 1, a student bubbles the mixture of gases through limewater. Carbon dioxide reacts with limewater.

The diagram shows the apparatus the student uses.

The student pushes the mixture of gases out of syringe A, but no gas bubbles appear in the limewater.

Give one change the student needs to make to the apparatus for gas bubbles to appear in the limewater.

add more line water to cover tube on the left

12

(b) When the apparatus in experiment 1 is set up correctly, the mixture of gases is bubbled gently through the limewater so that all the carbon dioxide is removed.

The volume of the mixture of gases in syringe A at the start is 76 cm³.

The volume of the mixture of gases in syringe B at the end is 66 cm³.

(i) Calculate the percentage by volume of carbon dioxide in the mixture of gases in syringe A.

 $\frac{10}{76}$ ×100 = 13.2%

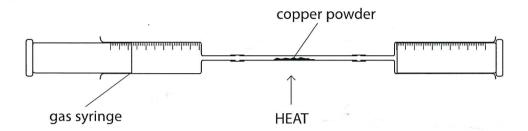
 $76-66=volume of co_{2}^{(2)}$ = 10 cm^{3}

percentage of carbon dioxide = 13 · 2

(ii) Give the change in the appearance of the limewater.

linewater turns from colourless to cloudy

(iii) Explain why the gas syringes in experiment 1 cannot be used to find the percentage of carbon dioxide in a typical sample of air.


He amount of carbon dioxide in the

there fore the reading wand beless then

 $\{2\}$

(c) In experiment 2, a teacher pushes the remaining gases over hot copper powder.

The diagram shows the apparatus the teacher uses.

The copper powder turns black as it reacts with oxygen.

Argon is extremely unreactive, so it does not react with copper.

(i) Name the black substance that forms on the copper powder.

(1)

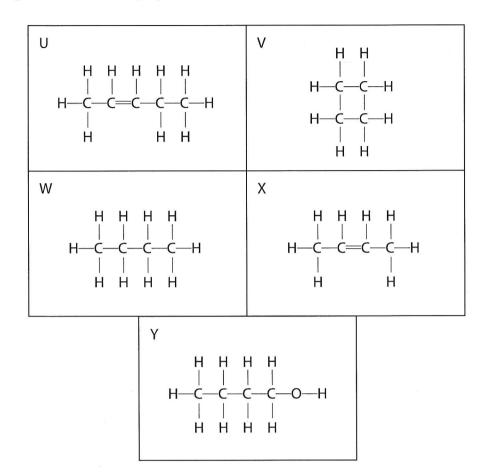
Copper(11) Oxide

(ii) Suggest why the teacher uses copper powder instead of the same mass of large pieces of copper.

the powder has a greater surface

(iii) Explain why argon is extremely unreactive.

organ has a full outer Shell OF electrons


therefore does not lose or gain electrons

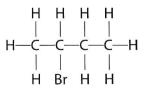
(Total for Question 5 = 10 marks)

- **6** This question is about organic compounds.
 - (a) The diagram shows the displayed formulae of five compounds, U, V, W, X and Y.

(i) Give the letter of the compound that is not a hydrocarbon.

(1)

...../


(ii) Give the letter of the compound that is a saturated hydrocarbon with the empirical formula CH_2

(1)

 \bigvee

(iii) Give the letter of the compound that reacts with bromine in the presence of ultraviolet radiation to form this structure.

(1)

W

(iv) Give the letter of the compound that forms an addition polymer with this repeat unit.

(1)

(v) Give the displayed formula of an alkene that is an isomer of compound X.

(1)

(vi) Compounds U and X are members of the same homologous series.

Members of the same homologous series have the same functional group.

Give two other characteristics of compounds in the same homologous series.

(2)

Same general for mula

2 Similar Chanical properties

- (b) Compound Z contains 38.7% carbon, 9.7% hydrogen and 51.6% oxygen by mass.
 - (i) Show by calculation that the empirical formula of compound Z is CH₃O

$$\frac{38.7}{12} \qquad \frac{9.7}{16} \qquad \frac{51.6}{16} \\
3.225 \qquad \frac{9.7}{3.225} \qquad \frac{3.225}{3.225} \\
3.225 \qquad 3.225$$

(ii) The relative formula mass (M_r) of compound Z is 62

Deduce the molecular formula of compound Z.

$$\frac{62}{31} = 2$$

$$\frac{62}{31} = 2$$

$$\frac{62}{31} = 2$$

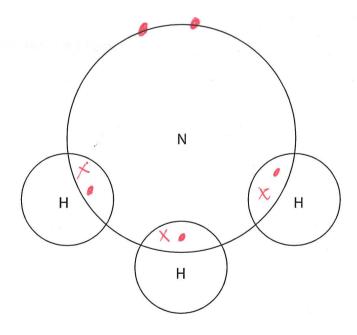
(Total for Question 6 = 11 marks)

molecular formula =

7	This question is about nitrogen and some of its compounds.	
	(a) Nitrogen and oxygen do not react together at room temperature.	
	At the high temperatures in a car engine, nitrogen and oxygen react to form nitrogen monoxide, NO	
	(i) Give a chemical equation for this reaction.	(-1)
	$N_2 + O_2 \rightarrow 2NO$	(1)
	(ii) Give a reason why this reaction only occurs at high temperatures.	
••••	the reaction has a high activation	(1)
	Namber	
	(iii) State why it is important that oxides of nitrogen are not released into the atmosphere.	š.
••••	acid rain	(1)
	(b) Nitrogen monoxide gas can be removed from car exhaust fumes when it reacts with carbon monoxide gas.	
	(i) The rate of the reaction is increased by passing the gases over a catalyst.	
	Explain how a catalyst increases the rate of a reaction.	(2)
	Catalyst provides an alternative pa	th way
	with lower activation energy	

(ii) Explain how increasing the pressure of gases increases the rate of reaction.

particles are closer together


there fore more collisions

per unit time

- (c) Ammonia is a simple molecule with the formula NH₃
 - (i) Complete the diagram to show the outer shell electrons in ammonia.

(2)

(3)

(ii) The bonds in ammonia are covalent.
Describe the forces of attraction in a covalent bond.
attractoion between nuclei
and shared pair of electrons
(iii) Explain why ammonia has a low boiling point.
force between molecules are weak
there fore requireclittle every to overcome
(Total for Question 7 = 14 marks)

- **8** This question is about barium chloride.
 - (a) Barium chloride can be made by reacting barium carbonate with dilute hydrochloric acid.

The chemical equation for the reaction is

$$BaCO_3(s) + 2HCl(aq) \rightarrow BaCl_2(aq) + H_2O(l) + CO_2(g)$$

Describe a method to produce dry crystals of hydrated barium chloride, starting with barium carbonate powder and dilute hydrochloric acid.

add barium carbonate to the acid (6)

until barium carbonate is in excess

filter Off the excess barium carbanate

heat solution to eva parate some of the

Cool to crystallise

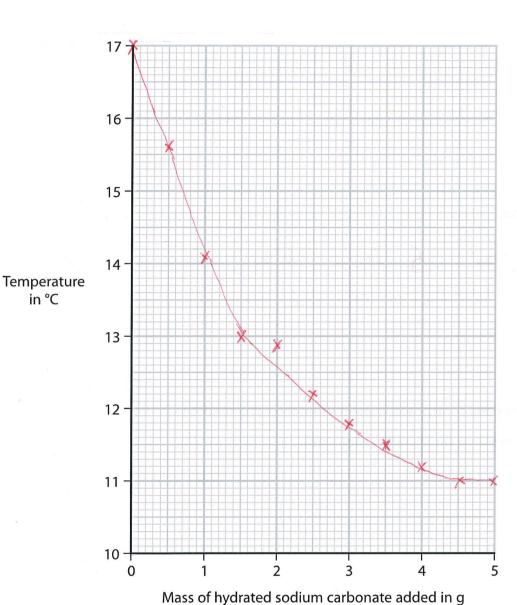
filter the crystals

leave crystals in a namplace to dry

(b) A colourless sol	ution contain	s sodium carbo	onate and	sodium sulfa	te.	
Describe a test contains sulfate		chloride to sho	ow that the	e colourless s	solution	
add d	ilhte	acid	then	add	barium	(2)
Chloride	W	hite p	recip	+ate		
		F				
			(7	Total for Our	action 9 — 9 ma	rke)

- **9** A student investigates the reaction between solid hydrated sodium carbonate and dilute hydrochloric acid.
 - (a) She uses this method to investigate the temperature change during the reaction.
 - Step 1 pour 25.0 cm³ of dilute hydrochloric acid into a polystyrene cup
 - Step 2 record the temperature of the dilute hydrochloric acid
 - Step 3 add 0.5 g of sodium carbonate and stir the mixture
 - Step 4 record the lowest temperature of the mixture
 - Step 5 add further 0.5 g portions of sodium carbonate, one portion at a time, stir the mixture and record the lowest temperature each time

The table shows the student's results.


Mass of sodium carbonate added in g	Temperature in °C		
0.0			
0.5	15.6		
1.0	14.1		
1.5	13.0		
2.0	12.9		
2.5	12.2		
3.0	11.8		
3.5	11.5		
4.0	11.2		
4.5	11.0		
5.0	11.0		

(i) Plot the student's results on the grid.

(2)

(ii) Draw a curve of best fit, ignoring the anomalous result.

(1)

(iii) Explain why it is better to use a polystyrene cup instead of a glass beaker in

this experiment.

poly styrere is an insulator reduces thornel every from the Surrondings therefore tempur attare decrease will be closer to true value

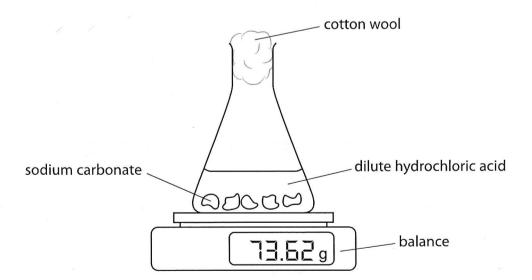
(iv) Suggest a reason for the anomalous result.

the Student forgot to Stir the mixture

(1)

(v) State how the results show that all the dilute hydrochloric acid has reacted.

as the two results at the end are the


Sque

(vi) Use the results of the experiment to explain the type of reaction that occurs when sodium carbonate is added to dilute hydrochloric acid.

the reaction is endothernic as shown by the temperature decrease

(b) The student does another experiment using the same reaction.

The diagram shows the student's apparatus.

The mass on the balance decreases as carbon dioxide gas escapes.

(i) Give a reason for the cotton wool plug in the conical flask.

toprevent acid splashing out

(1)

(ii) The student adds 2.12 g of sodium carbonate to an excess of dilute hydrochloric acid.

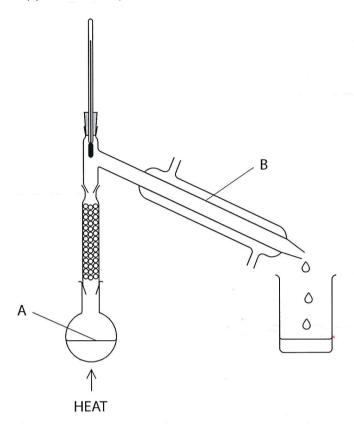
The chemical equation for the reaction is

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$

Calculate the maximum mass, in g, of carbon dioxide formed in the reaction.

(3)

$$mr(Na_1co_3) = 106$$
 $mol = \frac{nass}{mr} = \frac{2-12}{106} = 0.02$


(iii) Suggest why the mass of carbon dioxide produced is less than the calculated maximum mass.

(1)

Sodium carbonate is impure

(Total for Question 9 = 14 marks)

10 A teacher uses this apparatus to separate a mixture of ethanol and water.

(a) (i) Name this method of separation.

fractional distillation

(ii) Name the change of state taking place at A.

(1)

(1)

eva poration

(iii) Name the change of state taking place at B.

(1)

Condensation

- (b) The mixture contains 15.5 cm³ of ethanol.
 - 1.0 cm³ of ethanol has a mass of 0.79 g.

One mole of ethanol contains 6.00×10^{23} molecules.

[M] of ethanol = 46]

(i) Calculate the amount, in moles, of ethanol in 15.5 cm³ of ethanol.

$$\frac{12.2h5}{46} = 0.266 \text{ mol}$$

(2)

(1)

amount = 0.266 mc

(ii) Calculate the number of molecules of ethanol in 15.5 cm³ of ethanol.

0.266 × 6.02 × 10 = 1.60× 10 23

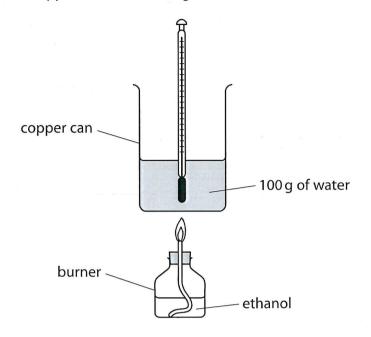
1.60 x10²³

number of molecules =

- (c) After five minutes, the teacher collects a sample of colourless liquid in a new beaker.
 - (i) Describe a chemical test to show that the colourless liquid contains water.

(2)

add anhydrous copper sulfate


which in the presence of water turns blue

(ii) Describe a physical test to show if the colourless liquid is pure water.

(2

meas were boiling point which is 100°C

(d) The teacher uses this apparatus to heat 100 g of water.

He records the temperature of the water before and after heating.

temperature of water before heating = 21.0 °C

temperature of water after heating = 70.5 °C

(i) Calculate the heat energy change (Q) in joules.

[specific heat capacity of water is 4.2 J/g/°C]

$$70.5 - 21.0 = 49.5 = \Delta T$$

 $Q = MC\Delta T = 100 \times 4.2 \times 49.5 = 20.790 J$
 $= 20.790 kJ$

(3)

(ii) The student burns 0.0200 mol of ethanol.

Use this information and your value for Q to calculate the molar enthalpy change (ΔH), in kJ/mol, for the combustion of ethanol.

Include a sign in your answer.

20.790 to

(2)

$$\Delta H = -1039.5$$

kJ/mo

(Total for Question 10 = 15 marks)

(1)

- 11 This question is about the reactivity of metals.
 - (a) Table 1 shows whether a reaction occurs between a metal and an aqueous solution of a metal sulfate.

Metal	Metal sulfate	Does a reaction occur?		
manganese	chromium sulfate	yes		
tin	cadmium sulfate	m sulfate no		
chromium	cadmium sulfate	yes		

Table 1

(i) Name the type of reaction that occurs between manganese and chromium sulfate.

displacement

(ii) Use the information in Table 1 to complete the order of reactivity.

most reactive manganese

Chromium

Cadmium

Tin

(b) Table 2 shows the colours of four metals and the colours of their metal sulfate solutions.

Metal Colour of metal		Colour of metal sulfate solution		
copper	brown	blue		
iron dark grey magnesium silvery		green		
		colourless		
zinc light grey		colourless		

Table 2

When a metal is added to a metal sulfate solution there may be a colour change on the surface of the metal and in the solution.

Use the information in Table 2 and your knowledge of the reactivity series to explain any colour changes in these two experiments.

copper added to magnesium sulfate solution 10 Colour Change							
as co	opper is	less reacti	ve than	magn	esium		
, ,					7		
			371	·L. J. No.	y		
,							
zinc added to iron	sulfate solution	Zinc fo	ins da	rt grey			
Solution	turns	colourless	as zin	ic is mor	Q		
reactive	then	iron					

(c) A different experiment can be used to place metals in order of reactivity.

This is the method.

Step 1 add 1 g of a metal to 25 cm³ of dilute sulfuric acid

Step 2 measure the volume of gas produced in one minute

(i) Give two variables that should be controlled in this experiment.

Concentration of dilute Sulfyric acid

2 temperature

(ii) A small piece of calcium is added to some dilute sulfuric acid in a beaker.

One of the products of the reaction, calcium sulfate, is insoluble in water.

Suggest why the reaction stops after a short time, even though the beaker still contains calcium and dilute sulfuric acid.

Calcium Sulfate forms alwayer and around the Calcium metal

36

(d) 1.00 g of aluminium is added to 0.0600 mol of dilute sulfuric acid.

The equation for the reaction is

$$2Al(s) + 3H_{2}SO_{4}(aq) \rightarrow Al_{2}(SO_{4})_{3}(aq) + 3H_{2}(g)$$

Show by calculation that the sulfuric acid is in excess.

mol of Al = 1 = 0.037 mol

$$mol\ of\ H_2SO_4 = \frac{0.037 \times 3}{2} = 0.0556 \, mol$$

therefore H2Soy is in excess

(Total for Question 11 = 12 marks)

(2)

TOTAL FOR PAPER = 110 MARKS

