

i

You can find out more about hazard symbols on www.understandthelabel.org.uk Chemicals are labeled with pictures so that whatever language you speak you know what the dangers are with those chemicals.

2

ŝ

7

4

wannig - exclomation minediate interet What do you think it means? Sign Correct answer

to skin leyel resp hact What do you think it means?

have unredicte + servere hoxic etret

Correct answer boxi C

coursing sun buns / eye demoge / consure to meters What do you think it means? avisoria Correct answer

toxic to aquetic What do you think it means? wildlife

environment d anorgrap Correct answer

8

5. 9

1.

œ.

correct answer / liquica gas extinde pressure What do you think it means? geolo shored under

reportin

attain of exploding even air (self-reachie) without exposure bo What do you think it means? Correct answer

explosives

cen sect-regulte when Hannable exposed to air or 300 What do you think it means? con errit Acumable Correct answer

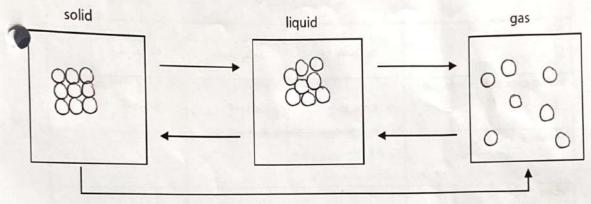
concirogen / substance or orgin hunury What do you think it means?

with reproductive Correct answer

health hazerel

unret Chemistry 20

States of Matter


Learning Outcomes:

 Describe, using particle diagrams, the three states of matter in terms of the arrangement, movement and energy of the particles

- 2) State the names of the interconversions between the three states of matter and describe how they are achieved
- 3) Identify, from making observations, a physical change

Changes of State

Add labels to the arrows that show the change of state and describe, using particle diagrams, the arrangement of the particles.

Describe the three states of matter in terms of the arrangement, movement and energy of the particles

	Solid	Liquid	Gas
Arrangement	negular	inegular	no clear anangement
Movement	vibrate at fixed positions	flows	random
Energy	1000	medium	high

Practical **Physical Changes**

- △ Safety Heating solids
 - Collect a labelled test-tube from the front and carefully heat for no more than 2 minutes. Leave to cool in a test-• tube rack.
 - Carefully record your observations

ctical Physical Changes			©	mistry 2
tube rack.		y heat for no more than	a 2 minutes. Leave to cool in a tes	t-
Carefully record your observat	tions			
ubstance		Appearance		
	before heating	during heating	after cooling	
ce	solid	gas	riquid	
Nax	solid	niquia	solid	0
Sodium chloride (common salt)	solid	solid	solid	
Zinc oxide				
lodine Teacher demo				
Solid carbon dioxide (dry ice) Teacher demo	e breven en seder de se			

- 1. Sodium chloride did nothing when heated with a Bunsen burner. What does this tell you about the melting temperature, T_m, of sodium chloride?
- methig temp v. high
- Liquid water stays liquid at room temperature but liquid wax freezes. Room temperature is about 20°C. What does 2. this tell you about the melting temperature, T_m, of water and of wax?

methig temp of wax higher man mat of water

3. Solid carbon dioxide is called dry ice. (a) Why is solid carbon dioxide called dry ice?

_____ (b) Give two uses of dry ice.

> 10 9

.....

Using State symbols

State	State symbol
Solid	(s)
Liquid	(1)
Gas	(g)

State symbols can be used to show the changes in state during physical or chemical processes.

Example: When ice is heated above its melting point.

 $H_2O(s) \rightarrow H_2O(I)$

Using chemical formula and state symbols, show state changes for the below physical processes.

1) Water is cooled below 0°C.

$$H_20 \rightarrow H_20(s)$$

2) Liquid bromine (Br₂) is vaporised.

3) Nitrogen gas (N₂) is cooled below its boiling point of -196°C

$$V_{2(q)} \rightarrow N_{2(l)}$$

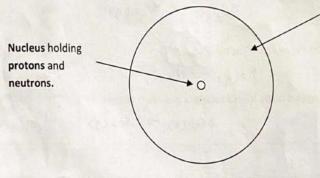
4) Carbon dioxide (CO2) changes directly from a solid to a gas when heated.

co2(s) → co2(g)

.....

Atomic Structure

Learning Outcomes:


- 1) Define the terms atom, atomic number and mass number
- 3) Deduce the number of protons, electrons and neutrons from an atom's atomic number and mass number
- 4) Describe how elements are arranged in the Periodic Table

All substances are made up of atoms. There are over 100 different sorts of atoms. A substance which consists of only one type of atom is called an element.

Key definition

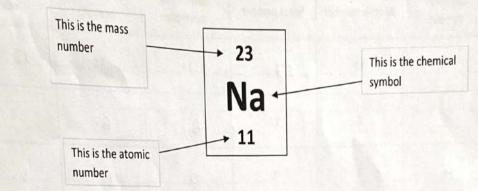
An atom is the smallest part of an element

Structure of a atom

Space occupied by electrons. This space is really big compared to the size of the nucleus

07-610

Subatomic particles


Particle	Position	Charge	Relative mass
Proton	nucleus	+1/ pos.	1
Neutron	nercleus	neurral I no charge	1
Electron	shell	- 1/neg.	1/1836

Use the following words to complete the word fill: electrons, energy levels, neutrons, nucleus, protons, and shells. (Words can be used more than once).

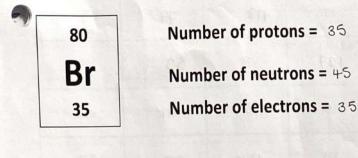
Atoms are neutral because the numbers of ... pro. hon.s.... and ... electrons. are equal.

Using the periodic table the number of protons, electrons and neutrons of an atom can be deduced.

Example - sodium (Na):

Key definition

Atomic number: The number of protons in an atom.


Mass number: The number of protons and neutrons in an atom.

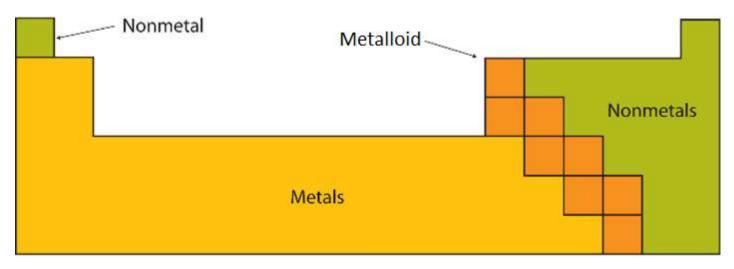
For an electrically neutral atom, the number of electrons equals the number of protons. Again, this makes sense from the table above, since the total positive charge from all the protons balances the total negative charge from the electrons.

So, by looking at the symbol on the periodic table we know that this sodium atom has:

- 11 protons (number of protons = atomic number)
- 12 neutrons (number of neutrons = mass number atomic number = 23 11 = 12) .
- 11 electrons (number of electrons = number of protons) .

For an atom of bromine, deduce the number of protons, neutrons and electrons.

Check out these resources:


- Tyler DeWitt https://www.youtube.com/watch?v=NSAgLvKOPLQ
- Brian Cox https://www.youtube.com/watch?v=-FWxd78sOZ8 •

g the periodi	c table complete the	table				+ Chemisti
Chemical symbol	Atomic number	Mass number	Number of neutrons	Number of protons	Number of electrons]
AI	13	27	14	13	13	
с	6	12	6	6	6	
Н	1	1	0	1	١	
0	8	16	8	8	8	
N	7	14	7	7	7	•
Na	11	23	12	n	n	
S	16	32	16	16	16	
ρ	15	31	16	15	15	
РЬ	82	207	125	82	82	
Au	79	197	118	79	79	•
I	53	127	74	53	53	
m	61	144	83	61	61	
Fr	87	223	136	F3	87	

Properties of metals and non-metals

Property	Metal	Non-metal
Appearance at room temperature	Mostly silvery sold, lustrous but often tarnished	Gaseous, mostly colourless or dull or often coloured solid
Electrical conductivity	Good conductivity	Non-conductive / Poor conduction
Mechanical strength	Strong, Malleable	Brittle
Feel	Cool, dense	Warm, light

Position of metals and non-metals in the periodic table

Task: Tick the elements in the table below which are metals:

calcium 🖌	sulfur	silicon
manganese 🖌	magnesium 🖌	potassium 🖌
carbon	francium 🗸	argon
mercury 🖌	iodine	hydrogen

- Tom Lehrer song <u>https://www.youtube.com/watch?v=SmwlzwGMMwc</u>
- How elements get their names <u>http://www.bbc.co.uk/science/0/24460393</u>
- University of Nottingham Periodic Table <u>http://periodicvideos.com/</u>

Compounds

Learning Outcomes:

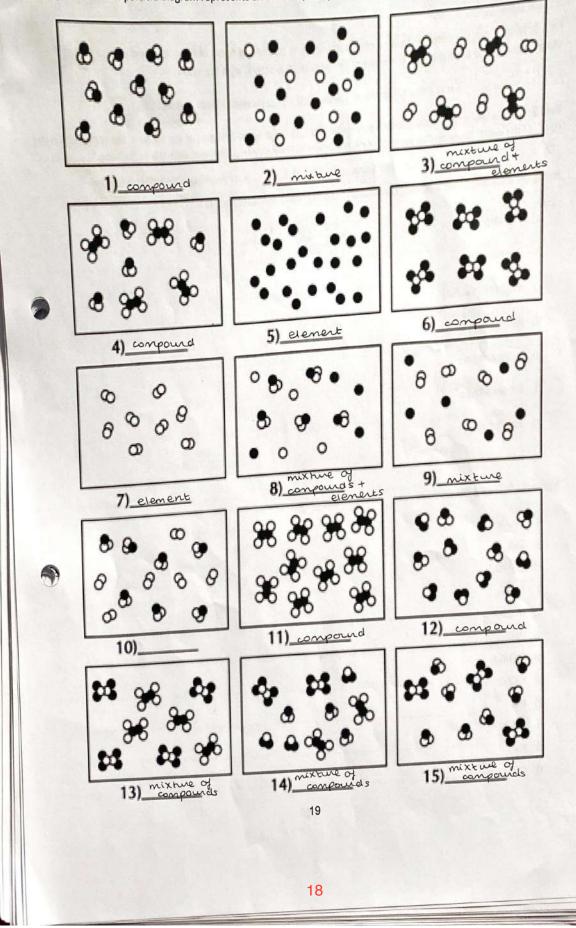
- 1) Define the term compound
- 2) Identify, using particle diagrams, an element, compound or mixture
- 3) Name different compounds
- 4) Define the term exothermic reaction

Key definition

mpounds				
arning Outcomes:				
1) Define the term co	ompound	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2) Identify, using par	ticle diagrams, an elem	ent, compound or mix	aure	
 Name different co Define the term e 				
definition			s tomal are chen	nically joined togeth
mpound is a substan	ce formed when 2 or m	ore elements (differer	nt types of atoms) are chen	incurry je
e compound, iron sulfi	de, is made by heating	a mixture of non and s		
and the second s	1		iron and sulfur	iron sulfide
and the second second	iron	sulfur		iron sulfide compound
bstance	1		iron and sulfur	
bstance opearance	1		iron and sulfur	
ubstance ppearance Vith magnet	1		iron and sulfur	
e compound, iron sulfi ubstance Appearance With magnet In water	1		iron and sulfur	
ubstance ppearance Vith magnet	1		iron and sulfur	

Results

What happens when the iron and sulfur are heated together?


Word equation

iron + sulfur -> iron suifide Ee

Chemical equation

Fe + s -> Fe S +

Particle diagram

Identify whether the particle diagram represents an element, compound or mixture

Naming compounds

Rule 1: When a metal is combined with a non-metal, the first part of the name of the compound is the name of the metal element. The second part is the name of the non-metal element, with the suffix "-ide."

e.g. iron + sulfur = iron sulfide (FeS)

compound of iron & sulfur ONLY

Rule 2: When a metal is combined with a non-metal and also oxygen, the first part of the name of the compound is the name of the metal element. The second part is the name of the non-metal element, with the suffix "-ate."

e.g. iron + sulfur + oxygen = iron sulfate (FeSO4) compound of iron, sulfur & oxygen

Name the elements in the following compounds. The first has been done for you.

a)	iron chloride	iron and chlorine
b)	zinc bromide	zinc + bromine
c)	magnesium sulfate	magnessin, sulfur + oxygen
d)	lead phosphide	lead + phosphorus
e)	sodium nitrate	sodium, nitrogen + oxygen
f)	lithium nitride	librium + nitrogen
g)	iron iodate	von, lodire + oxygen
h)	barium carbonate	barrin, carbon t oxygen

Name the following compounds:

i)	CaCO ₃	ealerin carbonate
j)	CdS	cadmiin sufice
k)	Ca ₃ (PO ₄) ₂	caleuin phosphate
I)	Mg ₃ N ₂	maresuin ninde
m)	Mn ₂ O ₅	mangarese oxide
n)	HgCl ₂	mercury chlonale
0)	Sn(NO ₃) ₄	tin nitrate
p)	K ₂ Cr ₂ O ₇	potassuin chromate
q)	HCI	hydrogen chloride
r)	H ₂ SO ₄	hydrogen sulfate
s)	NaH	sodium hydride
t)	CaC	calcuin carbide

Name the following molecules:

1) CO2 Caron Dioxide Caron Monoxide Silicon Dioxide 2) CO 3) SiO₂ 4) SO₂ dioxide 5) SO3 Sulphar Thoxide Hydrogen Sulphide 6) H₂S 7) H₂O 8) TiO₂ Dioxide 9) NH3 10) CH4

Chemical formula

The chemical formula of a compound tells you how many atoms of each element the compound contains. The number of atoms of each element is present, the subscript is of atoms of each element is written as a subscript and when only a single atom of an element is present, the subscript is omitted

Example: Ammonia has the chemical formula NH₃. Therefore there is 1 nitrogen atom and 3 hydrogen atoms.

Some formulae have brackets in them.

Example: Magnesium hydroxide has the formula Mg(OH)₂. The 2 outside the brackets tells you that you must multiple the total number of each atom inside the bracket by 2. So in Mg(OH)₂ you have one magnesium atom, two oxygen atoms and two hydrogen atoms.

formula	carbon atoms	sulfur atoms	nitrogen atoms	hydrogen atoms	oxygen atoms	iron atoms
CO2	- 1	0	0	0	2	0
H ₂ S	0	1	0	2	0	0
Fe(OH) ₃	0	0	0	3	3	1
Fe(NO ₃) ₃	0	0	3	0	9	1
(NH ₄) ₂ SO ₄	0	1	2	8	4	0
FeSO ₄ .7H ₂ O	0	1	0	14	11	1
	CO ₂ H ₂ S Fe(OH) ₃ Fe(NO ₃) ₃ (NH ₄) ₂ SO ₄	atoms CO2 I H2S O Fe(OH)3 O Fe(NO3)3 O (NH4)2SO4 O	tormula atoms atoms atoms atoms atoms CO2 I O H2S O 1 Fe(OH)3 O O Fe(NO3)3 O O (NH4)2SO4 O 1	atoms atoms atoms atoms CO2 1 0 0 H2S 0 1 0 Fe(OH)3 0 0 0 Fe(NO3)3 0 0 3 (NH4)2SO4 0 1 2	atoms atoms <th< td=""><td>atoms atoms <th< td=""></th<></td></th<>	atoms atoms <th< td=""></th<>

Relative formula mass - Mr (11)

Using the Periodic table and its values for relative atomic mass it is possible to work out the relative formula mass of any compound given its chemical formula. It is calculated by adding up the relative atomic masses (Ar) of all the atoms present in the formula.

xample:

The relative formula mass (Mr) for water (H2O) is 18.

Water

Atoms present = $(2 \times H) + (1 \times O)$

$$M_r = (2 \times 1) + (1 \times 16) = 18$$

 $= H_2O$

Hydrogen chloride - HCL		Calcium	Calcium hydroxide - Ca(OH) ₂		ated copper sulfate - CuSO ₄ .5H ₂ O
Atoms	= (1 x H) + (1 x Cl)	Atoms	= (1 x Ca) + (2 x O) + (2x H)	Aton	$ns = (1 \times Cu) + (1 \times S) + (4 \times O) + (5 \times H_2O)$
Mr	= (1 x 1) + (1 x 35.5)	Mr	= (1 x 40) + (2 x 16) + (2 x 1)	Mr	= (1 x63.5) + (1x 32) + (4 x 16) + (5 x 18)
	= 36.5		= 74		= 249.5

Calculate the re	lative formula mass (Mr.) for the following elements or compounds:
1. CO ₂	C = 10 = 20 = 20
	$C = 12$ $O_2 = 16 \times 2 = 32$ 12 + 32 = 44
2. CH4	
	C = 12 H ₄ = 1×4 = 4
3. l ₂	12 + 4 = 16
4. No.	$1_2 = 127 \times 2 = 254$
4. NaCl	$N_{0} = 23$ $C_{1} = 35.5$
5. SO2	23 + 35.5 = 58.5
	$S = 32$ $O_2 = 32$
6 MgCl ₂	32 + 32 = 64
	$m_g = 24$ $u_z = 35.5 \times 2 = 71$
7. CuSO₄	24 + 71 = 95
8 Na ₂ CO ₃	$Cu = 63.5$ S = 32 $O_4 = 16 \times 4 = 64$ 63.5 + 32 + 64 = 149.5
-1003	Naz = 23×2=46 C=17 0 = 16×3=48
9. C ₂ H ₅ OH	46 + 12 + 48 = 100
10. Fe /OU	$e_2 = 12 \times 2 = 24$ Hs = 1×5=5 0=16 H=1 24 + 5 + 16 + 1 = 46
10. Fe (OH) ₂	$Fe = 56$ $O_2 = 16 \times 2 = 32$ $H_2 = 1 \times 2 = 2$
11. (NH ₄) ₂ CO ₃	$56 + 32 + 2 = \frac{90}{2}$
	$N_2 = 14 \times 2 = 28$ H ₈ = 8 C= 12 O ₃ = 16 \times 3 = 48
	28 + 8 + 12 + 48 = 96
12. Al(NO ₃) ₃	AI = 27 N = 11/2 = 112
	$AI = 27 \qquad N_3 = 14 \times 3 = 42 \qquad O_q = 16 \times 9 = 144 \qquad \bigcirc \qquad$
13. C ₃ H ₅ (NO ₃) ₃	
3.13(1103)3	$C_3 = 12 \times 3 = 36$ Hs = 5 N ₃ = 14 × 3 $O_q = 144$
	$36 + 5 + 42 + 144 = \frac{227}{227}$
14. MgSO ₄ .7H ₂ O	Mg SO4 / 7H20
	24 DH
	$H_2 = 24 + H_2 O = (2x1) + 16 = 18$
	04 = 16 × 4 7H20 = 18 × 7
	24 + 32 + 64 = 126
	= 120
	120 + 126 = 246
	22
1	

Work out the Relative Formula Mass (Mr) of the following:

Name	Formula						
Fluorine	F ₂	M_r $19 \times 2 = 38$					
Phosphorus	P4	31×4 = 124					
Ozone	O ₃	16 × 3 = 48					
Ethane	C ₂ H ₆	$(2 \times 12) + (6 \times 1) = 24 + 6 = 30$					
Sulfuric acid	H ₂ SO ₄	$(2\times1) + 32 + (16\times4) = 2 + 32 + 64$ = 98					
Iron hydroxide	Fe(OH) ₃	$56 + 3 \times (16 + 1) = 56 + 51$ = 107					
Calcium carbonate	CaCO ₃	$40 \pm 12 \pm (3 \times 16) = 40 \pm 12 \pm 48$ = 100					
Ammonia	NH ₃	14+(3×1)=17					
Ammonium iron sulfate	NH4Fe(SO4)2	$\frac{14 + 4 + 56 + [2 \times (32 + 64)]}{= 266}$					
Glucose	C ₆ H ₁₂ O ₆	$(6 \times 12) + 12 + (16 \times 6) = 72 + 12 + 96$ = 180					
Hydrated colbalt chloride	CoCl ₂ .6H ₂ O	$59 + 7H = 130 \qquad H_20 = 18 \\ 6H_20 = 18 \times 6 = 108$					
lydrated vanadium romide	VBr ₂ .4H ₂ O	$V = 51 \text{Br}_2 = 160 \text{H}_2 0 = 18 \\ 51 + 160 = 211 \text{H}_2 0 = 18 \times 4 = 72$					
ydrated copper rsenate	Cu ₃ (AsO ₄) ₂ .4H ₂ O	$\begin{array}{c} 211 + 72 = 283 \\ Cu_3 = 63.5 \times 3 = 190.5 \\ (AsO_4)_2 = 75 + (4 \times 16) \\ = 139 \times 2 \end{array} \qquad H_2O = 18 \\ 4H_2O = 72 \end{array}$					
		= 278 $190.5 + 278 = 468.5$ $468.5 + 72 = 540.5$					

25/23

Chemical reactions

Learning Outcomes:

- 1) Accurately use a mass balance to record mass changes in chemical reactions
- 2) Accurately make and record observation in chemical reactions
- 3) Identify a synthesis and decomposition reaction from mass changes
- 4) Define the term exothermic and endothermic reaction

Practical 1 Mass changes

Heating solids, take great care that crucibles have cooled before weighing. △ Safety

- 1. Collect a metal crucible and add 1 spatula measure of the solid.
- 2. Weigh the crucible and solid and record the mass
- 3. Heat strongly
- 4. Allow crucible to cool and then reweigh
- 5. Carefully record your observations.

	ALC: NOR	Mass (g)	Observation		
Substance	before heating	after heating	change	1.0.00	
Copper − Cu→ I	2.65	3.40	(+0.75)	colour charge orange-brown to black	
21-7227	QT + (91)	12 + 61	+ oxyger		
Sodium hydrogen -> 3 carbonate - NaHCO ₃	4.50	3.35	(-1.15) -gas	gas produced from solid	
Zinc oxide – ZnO	3.40	3.40	to	stays me same colour	
Zinc nitrate $- Zn(NO_3)_2$ $\rightarrow 3$	4.26	3.72	(-0.54) losig - oxyger	gas produced and vester win graving splint >	
			+ 004		

r and r

Conclusion

There are three possible results when heating a solid:

There is no change because the solid does not react. 1.

copper +

zinc nitrate ->

- The solid gets heavier because it takes something from the air. It usually reacts with oxygen to make an 2. oxide . This is a chemical reaction in which the substance builds up: Synmens.
- The solid gets lighter because it loses something to the air; gases like carbon d water 3.

This is a chemical reaction in which the substance is broken down by heat: Themal Decomposition .

soduin hydroger carbonate → ______+ zric oxide → 29

Pb(NO3)2+2K1 -> Pbiz +KNO2

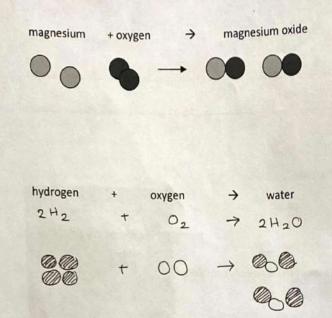
Practical 2 Mass conservation

- 1. Collect the conical flask containing potassium iodide (KI) and lead nitrate $(Pb(NO_3)_2)$
- 2. Weigh the conical flask and record the mass
- 3. Placing your thumb over the bung, invert the conical flask so that the two solution mix
- 4. Reweigh the conical flask and record the mass
- 5. Carefully record your observations

Substance		Mass (g)	Observation	
Substance	before mixing	after mixing	change	prostant and a starting
potassium iodide (KI) and lead nitrate \rightarrow 2 (Pb(NO ₃) ₂)		Level Y	0	yellow solich (ppt) forms

Conclusion

- 1) When potassium iodide (KI) and lead nitrate (Pb(NO₃)₂) were reacted, how do know that a chemical reaction had occurred?
- 2) Comment on the mass change for this reaction


Further Questions

The table below gives the results of another experiment in which some more substances were heated.

Substance	Mass before heating (g)	Mass after heating (g)
Zinc	6.01	10.02
Sodium chloride	5.49	5.49
Potassium permanganate	4.47	4.08
Ammonium carbonate	5.73	0.00

- a) Which of these substances does not react when heated in air? Sodum chlonicle I know this because the mass does not change
- I know this because mass after heating decreases to O
- I know this because mass after hearing is sugnity lower.

copper + oxygen -> copper oxide 2) sodiure -> t water + earbon dioxide (g) Sodun hydro ger carbonate (9) 15 oxid zuic oxide -> zuic oxide zinc nutrate -> oxygen + (zinc) + rutrogen dioxide oxide (9) (9) (5) 28

Balancing chemical equations practice

Balance the equations by inserting numbers as necessary.

1.	calcium	+	oxygen	÷	calcium oxide
	2 Ca	+	Oz	÷	2CaO
2.	nitrogen	+	oxygen	<i>→</i>	nitrogen oxide
	Nz	+	O2	÷	2N0

3.	magnesium	+ hydrochloric acid	>	magnesium chloride + hydrogen	

 $Mg + 2 HCI \rightarrow MgCl_2 + H_2$

30

Han.

4.	nitrogen	+	hydroger	• →	ammonia	
	N ₂		3 H2	→ 2	4	
			1.			
5.	hydrogen	+	sulfur →	hydroger	sulfide	the the
8	8 H ₂			→ 8 H		
6.	potassium	+	oxygen	→ pc	tassium oxide	16 36
	tκ	1	02	⇒ 2 K ₂ () DP	
•			a., 19 7		41 OF 144	
	hydrogen				rogen chloride	
1	H ₂		Cl ₂	→ 2.HCl	-	1.
8.	aluminium	1 3	iron oxide	→ alum	inium oxide	+ iron
also, and 2	AI					+ 2 Fe
				3 4 1	6	
A 0.5.0	1	37	· Sal		× 05	Same -
9.	magnesium	1000		→ magn	L + Di + di	iron
3		+ F	e ₂ O ₃	→ 3 MgO		2 .Fe
trans Call			• • •	na	541	
	hlorine oxide		chlorine	94 474	oxygen	
20	Cl ₂ O ₇	÷	2_Cl2	+ 7	02	4
91 - 0 2 0 3 = 4	2412 33	021+	aned .	31	Yahi Yahi Chiara 38	
				2014 81 2 3	ary drag drag	•••

				E Contraction of the second se
11. ethane	+ oxygen→	carbon dioxide	+ water	
		₹c02	+ #H2O	
K C₂H6	T P of		2 6H	
2C 6H	20 × 3. 140 20 64	2C 201	3 30 +e	
12. aluminium	oxide + sulfuric acid \rightarrow	aluminium sulfate +	water	
Al ₂ O ₃	+ H ₂ SO ₄ -	→ Al ₂ (SO ₄) ₃ +	3 H ₂ O	
2A1 30	2H 13 40	2 Al 3 S - 12 40	2H 10	oxygen
24	r. 24, 70, 1s	2AT. :	24, 130, 35	•
13. copper(II)	nitrate \rightarrow copper(I	I) oxide + nitro	gen dioxide +	oxygen
Cu(NO ₃) ₂ 2	\rightarrow CuO 2	0 2 · · +	2NO2 05 4	+ ^y 2 ⁰ 2
Lea 2N	Lea		IN ×2 20×2	20
60	0 ا ohosphate + silicon diox	ide + carbon → calci		prous + carbon monoxide
2 Ca3(PO4)	2 + 6 SiO ₂	+ 10 C >6	CaSiO₃ + P	+10 co (or halves)
3C++ 2P+ 80 ×	Z 20×	5 1C×10 6	Leer 6 4 Jair 6 30×6	H ICX10 10×810
10 4	16 + 12 = 2	.80	180	
	$\begin{array}{ccc} \text{nitric acid} & \rightarrow \\ \text{HNO}_3 & \rightarrow \end{array}$	sulfuric acid + H ₂ SO ₄ +	nitrogen dioxide 6 NO2	e + water + 2 .H ₂ O
18	LH × 8 LA × 8 30 × 8	247 18 40	20 The	2H*3 LO×3
	1240	40	80	ans.
	18 14×4 1N×4 30×4=120 H=6 N=6	$ \begin{array}{l} IS \\ 4H \\ IN \times 4 \\ 70 \\ 32 \\ H = 6 \\ N = 6 \\ 0 = 18 \\ 0 = 18 \end{array} $	leoues = 130	60 2H20∴0=15 H=6
	0=18			

T

BRAN.

16. When pentane (C_5H_{12}) completely combusts (combines with oxygen) the reaction produces water and carbon dioxide only. Write the word equation and the chemical equation with state symbols.

Pentare + Oxygen -> Water + Carbon Dioxide $C_{5H_{12}} + 80_{2(9)} - 6H_{2}0_{(1)} + 5C0_{2(9)}$

17. Fluorine (F₂) reacts violently with calcium bromide (CaBr₂). This is a halogen displacement reaction. The products are bromine (Br₂) and calcium fluoride (CaF₂). Write the word equation and the chemical equation.

Fluorine + Calcium Bromicle -> Bromine + Calcium Fluoride F2 + Cabry -> Br2 + CaF2

18. When one molecule of propanoic acid (C_2H_5COOH) reacts with one molecule of ethanol (C_2H_5OH) the reaction produces one molecule of an ester called ethyl propanoate ($C_2H_5COOC_2H_5$) and one other common molecule. Write the word equation and the chemical equation.

Popanoic acid + Ethanoi -> Ethyl Propanoute + Water C2H5 COOR + GH5 OR -> GH5 COOGH5 + H2O

19. A white precipitate (solid) of barium sulfate ($BaSO_4$) and one other product (which is soluble) are produced when solutions of potassium sulfate (K_2SO_4) and barium nitrate ($Ba(NO_3)_2$) are mixed in a beaker. Write the word equation and the chemical equation with state symbols.

Potassium Sulphate + Bain Nitrate -> Bain Sulphate + Plassium Nitrate k2SO4 (aq) + Ba (NO3)2 -> BaSO4 (S) + 7KNO3 (av)