Polyatomic Formulae

Learning Outcomes:

- 1) Recall the formulae for some common polyatomic ions, eg the sulfate ion is SO_4^{2}
- 2) Deduce the formula of ionic substances containing polyatomic ions

If a compound contains one polyatomic ion the formula is simple. For example Li $^{+}$ joins with OH to form LiOH. If there is more than one of the polyatomic ion, it goes in brackets with the number afterwards as a subscript. For example Mg $^{2+}$ joins with 20H to make Mg(OH) $_{2-}$.

Polyatomic ion	Charge	Formulae
hydroxide	-1	OH-
sulfate	-2	SO42-
carbonate	-2	CO32-
nitrate	-1	NO3-
ammonium	+1	NH4+

As you know you can use the periodic table to work out the charges on the ions from group 1, 2, 3, 5, 6 & 7. There are however 7 monoatomic ions that you came across in the lons topic in which you cannot use the periodic to work out their charges.

lon	Formula
hydrogen	H*
silver	Ag⁺
zinc	Zn ²⁺
copper (II)	Cu ²⁺
lead (II)	Pb ²⁺
iron(II)	Fe ²⁺
iron(III)	Fe³+

lonic compound	lons in the compound	Formula	
Sodium hydroxide	Na ¹⁺ OH ¹⁻	NaOH	
Calcium hydroxide	Ca ²⁺ OH ¹⁻ OH ¹⁻	Ca(OH)2	
Magnesium sulfate	mg z+ 504 2-	Mg504	
Potassium nitrate	K+ NO3	KNO ₃	
Calcium hydroxide	Ca2+ OH-	(a(OH)2	
Aluminium nitrate	A13+ NO3 NO3	A1 (NO3)3	
Ammonium chloride	NH4T CIT	NH4CI	
Lithium sulfate	Lit 5042-	hi2 504	
Magnesium carbonate	mg z+ cog z-	mg co;	
Aluminium sulfate	A13+ SO42- SO42-	A12(SO+)3	
ammonium oxide	NH4+ 02-	(NH4)20	
Lithium carbonate	hi + 0032-	Li 2 003	
Potassium hydroxide	K+ OH-	KOH	
Lithium nit(it)	Ministe NO2	Li, NO2	
Magnesium nitrate	Mg2+ NO3- NO3-	mg (NO3)2	
Beryllium sulfate	Be2+ SO42-	BeSOH	

Ionic compound	lons in the compound	formula
Rubidium sulfate	Rb+ 5942-	Rb2 504
ammonium nitrate	NH4+ NO3-	NH4 NO3 TO
Caesium nitrate	cs+ NO3-	CSNO3
ammonium carbonate	NH4+ CO32-	(NH4) ₂ CO ₃
Gallium hydroxide	Ga3+ OH- OH-	Ga (OH) 3
Zinc sulfate	Zn 2+ SO4 2-	Zn504
Lead(II) nitrate	Pb2+ NO3- NO3-	Pb (NO3)2
Silver hydroxide	Ag+ OH-	АдОН
Zinc nitrate	Zn2+ NO3- NO3-	Zn (NO3)2
Hydrogen sulfate	H+ 5042-	H ₂ 804
lron(II) hydroxide	Fe2+ OH- OH-	Fe (OH)2
lron(III) hydroxide	Fe 3+ OH- OH-	Fe (OH) 3
Copper(II) sulfate	Cu2+ 8042-	Cus04
Copper(II) nitrate	Cu2+ NO3- NO3-	cu(NO3)2
ron(II) nitrate	Fe 2+ NO3 NO3-	Fe (NO ₃) ₂
ron(III) carbonate	Fe 3+ CO32- CO32-	Fe ₂ (CO ₃) ₃

CO32-

Task: Write the chemical equations for the following reactions. You will need to work out the formulae of the substances and then balance the equation.

1) sodium + magnesium sulfate → sodium sulfate + magnesium

Ag NO
$$_{3}$$
 + kCl \longrightarrow AgCl + kNO $_{3}$

Ag NO $_{3}$ + kCl \longrightarrow Cl \longrightarrow

4) A solution of zinc nitrate is formed when zinc reacts with nitric acid. Hydrogen gas is also given off.

5) Ammonium hydroxide reacts with sulfuric acid to form ammonium sulfate and water

$$2NH_{4}OH + H_{2}SO_{4} - s(NH_{4})_{2}SO_{4} + 2H_{2}O$$

$$NH_{4}^{2}OH^{-}$$
6) When copper is added to a solution of silver nitrate, a shiny metal is formed

7) Challenge. A solution of magnesium sulfate is formed when magnesium reacts with copper sulfate. Hydrogen gas is also given off. (Note: this is a tricky one - there are 2 reactions going on)

Indicators & Neutralisation

Learning Outcomes:

- 1) Describe the use of the indicators to distinguish between acidic and alkaline solutions
- 2) Define acids as sources of hydrogen ions, H*, and alkalis as sources of hydroxide ions, OH*

Task: How many different acids and alkalis can you remember?

Acid		Alkali		
Name	Formula	Name	Formula	
hydrochloric	HCL	Sodium hydroxide	NaOH	
sulfune acid	H ₂ 804 HNO ₃	annonuin hydroxide	NH4 OH	

Acids in solution are a source of hydrogen ions (H+)

Alkalis in solution are a source of hydroxide ions (OH-)

Complete this key acid neutralisation reaction:

acid + alkali -> salt + water

acid + alkali neutralisation

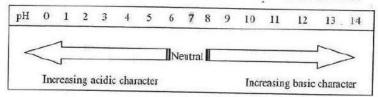
Acids can be neutralised by alkalis to form salt and water:

acid + alkali → salt + water

All simple acids contain a hydrogen ion. When that hydrogen ion is replaced by a metal ion, the compound formed called a salt.

Procedure

- 1. Pipette 2cm³ of HCl to a boiling tube
- 2. Add a couple of drops of universal indicator
- 3. Slowly pipette NaOH into the test tube until the colour changes to green
- 4. If you overshoot the mark, pipette some more HCl into the boiling tube


Task: Write the word and chemical equation for the reaction between hydrochloric acid and sodium hydroxide

TASK: Label your chemical equation above to show what happens during neutralisation to the hydrogen ion(H⁺) in the and the hydroxide ion (OH⁻) ion in the alkali.

This is a simple definition of neutralisation. A better definition of neutralisation is the reaction between an acid and base to produce water and salt only. An alkali is a soluble base. To see this, we need a more detailed definition of a and bases.

pH & indicators

The pH scale ranges from about 0 to 14, and tells you how acidic or how alkaline a solution is.

An indicator is a substance that has more than one colour form depending on the pH.

Demo / Practical Indicators

There are several other indicators that we use in chemistry. Each indicator has a different colour change. Using hydrochloric acid & sodium hydroxide determine the colour change of these indicators.

Procedure

- 1. Pipette 2cm³ of HCl to a test tube
- 2. Add a couple of drops of indicator and record the colour change
- 3. Slowly pipette NaOH into the test tube until there is a colour change. Record this change
- 4. Repeat the procedure with a different indicator

Indicator	Colour in acidic solution	Colour in alkaline solution
Litmus	red	blue
Methyl orange	red	yellow
Phenolphthalein	colourless	pink
Universal indicator	red / orange	purple

What is different about universal indicator compared to the others?	
shows how acidic / alkaline a substance i	40
s this an advantage or a disadvantage? Explain why?	

The pH scale, from 0–14, can be used to classify solutions as strongly acidic (0–3), weakly acidic (4–6), neutral (7), weakly alkaline (8–10) and strongly alkaline (11–14)

Demonstration of acids and alkalis of differing strength and the colour of Universal Indicator

Universal indicator is a mixture of different dyes which change colour in a gradual way over a range of pH:

Example of substance	Colour of universal indicator	Strength acid/alkali	pH
Hydrochloric acid	ned	strong acid	1
Ethanoic acid solution	orange	weak acid	4
Magnesium sulfate solution	yenow	weak acid	6
Distilled Water	green	neutral	7
Sodium chloride solution	gneer	neutral	7
Magnesium hydroxide	blue	weak alkali	10
Sodium hydroxide	puple	strong alkali	13

Questions on acids, alkalis and indicators

1)	What colour is phenolphthalein when sodium hydroxide is added?	PINK
2)	What colour is methyl orange when nitric acid is added?	red
3)	What colour is litmus when phosphoric acid is added?	red
4)	What colour is methyl orange when a sodium hydroxide is added?	yellow_
5)	What colour is phenolphthalein when H₂SO₄ is added?	colouriess
6)	Which common indicator solution goes yellow when KOH is added?	memyl orange
7)	What colour is litmus when Ca(OH)₂ is added?	_blue
8)	What colour is phenolphthalein in distilled water?	<u>colowless</u>
	Notes: coloniless at <7, pink	2.7
9)	What colour is universal indicator when added to copper oxide and wat	ter? blue
	Notes: copper oxide + water is basis	C

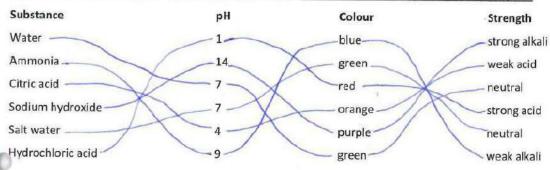
What "type" of compound is this?

For each of the compounds below, say whether it is:

<u>acid</u> or <u>alkali</u> or <u>base</u> or <u>metal</u> or <u>carbonate</u> or <u>salt</u>

Don't worry, you will learn the proper definitions of these words in the next few lessons.

Compound	Туре	Compound	Туре
Aluminium nitrate	Salt	Lithium sulfate	Salt
Aluminium sulfate	Salt	Magnesium	Metal
ammonium carbonate	Carbonate	Magnesium carbonate	Carbonate
Ammonium chloride	Salt	magnesium hydroxide	Alkali
ammonium hydroxide	Alkali	Magnesium nitrate	Salt
Beryllium sulfate	Salt	magnesium oxide	Base
Caesium nitrate	Salt	nitric acid	Acid
Calcium	Metal	phosphoric acid	Acid
Calcium hydroxide	Alkali	Potassium	Metal
citric acid	Acid	Potassium carbonate	Carbonate
Copper oxide	Base	potassium hydroxide	Alkali
Copper(II) nitrate	Base	Potassium nitrate	Salt
Copper(II) sulfate	Salt	Sodium	Metal
Gold	Metal	sodium hydroxide	Alkali
hydrochloric acid	Acid	sulfuric acid	Acid
Iron	Metal	Zinc carbonate	Carbonate
Iron oxide	Base	Zinc nitrate	Salt
Iron(II) nitrate	Salt	Zinc oxide	Base
Lead oxide	Base	Zinc sulfate	Salt
Lithium carbonate	Carbonate		


Now review your answers. Could some compounds be classified in more than one type? If so, which ones?

Acid + Base

Learning Outcomes:

- 1) Recall the definition of an acid, alkali, base and salt
- 2) Describe the neutralisation reaction between an acid and alkali and an acid and base
- 3) Write the word equations for neutralisation reactions

Task: Match up the substance with its correct pH value, colour with universal indicator and description

Key definitions:

Acids are described as

having a pH of less man 7.

Alkalis are described as

having a pH of less man 7.

A Base is a substance which can

neutralise an acid, forming salt +

water only.

A Salt is what is produced when

a hydrogen ion is neplaced by a netal

)	
So wha	at do an alkali and a base have in common?
0	born restratise acid
0	produce salt + water
Whati	s the difference between an alkali and a base?
6	alkali is a soluble base
0	bases are not somble à mater

Naming salts

Different salts can be made by neutralising different acids and alkalis:

Hydrochloric acid reacts to give salts called chlorides.

Sulfuric acid reacts to give salts called sulfates.

Nitric acid reacts to give salts called <u>nitrates</u>.

For example

Task: Complete the following word equations

- a) sodium hydroxide + nitric acid → sodium _____ + water
- b) potassium hydroxide + sulfuric acid → potassium <u>sulfale</u> + water
- c) ammonium hydroxide + hydrochloric acid -> ammonium __chloride_ + water
- d) calcium hydroxide + nitric acid → <u>coulcium</u> nitrate + water
- e) potassium hydroxide + phosphoricacid > potassium phosphate + water
- f) magnesium hydroxide + citric acid → ______citrate + water

1. Complete the following word equations, setting them out on two lines:

(a)	nitric acid	+	potassium hydroxide	\rightarrow	potassium + water
(b)	hydrochloric acid	+	magnesium hydroxide	\rightarrow	magnesim + water
(c)	sulfuric + acid		sodium hydroxide	\rightarrow	soduin + water
(d)	nitric acid	+	copper(II) oxide	\rightarrow	copper (11) + water
(e)	hydrochloric acid	+	zinc oxide	\rightarrow	thronde + water
(f)	sulfuric + acid		calcium oxide	\rightarrow	calcium + water surfate
(g)	phosphoric acid	+	iron(II) hydroxide	\rightarrow	iron (11) prosphate + water
(h)	citric acid	+	ammonium hydroxide	>	anmonium + water atrate
(i)	hydrochloric acid	+	rubidium hydroxide	→	rubidium + water chloride
(j)	sulfuric + acid		copper(II) oxide	\rightarrow	copper (11) surfate + water
(k)	nitric acid	+	aluminium oxide	\rightarrow	aluninium + water
(1)	hydrochloric acid	+ ′	ammonium hydroxide	\rightarrow	annorum + water

Carbonate + Acid

Learning Outcomes:

- 1) Describe the reactions between metal carbonates and acids
- 2) Write the word equations for these reactions

0

<u>Practical</u>

Carbonates and Acids

△ Safety

Risk of acid in eyes.

- Put half a spatula of solid in a test tube and place in a test tube rack
- Add a small amount of hydrochloric acid (HCl) and test any gases that are produced.
- Carefully record your observations.

Metal Carbonate	Observation	Gases produced		
Calcium carbonate CaCO₃	• soid disappears / becomes smaller • gas bubbles produced	dioxide		
Copper carbonate	· bubbles maller	control		
Sodium carbonate Na ₂ CO ₃	o solid disappears/becomes bubbles smaller	carbon		
Sodium hydrogen carbonate NaHCO ₃	· solid becomes smaller · bubbles of gas	carbon		

Write the word equations for the reactions carried out today.

		(1) A	dio
Ocopper + hydrochlori			
carbonate acid	chlo	onde	diexide
(3) sodium + hydroc	nlonic >	sodium + wa	ber + carbon
carbonate acid	L.	chlonde	dioxide
(4) sodium hydroch			
hydrogen + acid		hloride	dioxide
combonate	Many — Annu — W		

The second secon			

Metal + Acid

Learning Outcomes:

- 1) Describe the reactions between metals and acids
- 2) Write the word equations for these reactions

Practical

Metals with acid

△ Care

Remember how to pour from reagent bottle.

Add about 3 cm³ dilute hydrochloric acid to metal sample (Mg, Zn, Fe, Pb, Cu). Warm if necessary. Collect any gas evolved by holding a second test-tube on top of the first and then test with lighted splint. Dispose of products by pour into residues container, not down sink.

Metal	Appearance of reaction	Test with lit splint (Hydrogen present or
Mg	ong disappears	/ squeaky pop
Zn	· Zn disappears	S n
Fe	· Fe disappears	✓ »
Pb	· Pb dis appears	J "
Cu	· Cu disappears	✓ "
Ca (demo)	· Ca disappears	<i>J</i> "

Write the word equations for the reactions carried out today.

(P) m	ragresum + hydrochleric -> magnesium + hydrogen
***************************************	acid chloricle
2 z	ic + hydrochloric > zirc + hydrogea acid chloride
3 1/	ron + hydrochlonic -> 100n ; + hydrogen acid chloride
	lead + hydrochloric → lead + hydroger acid chloride
6	copper + hydrocusionic 7 copper + hydrogen acid chioride
0 0	alaum + hydrochlone -> calaum + hydrogen acid chlonde

Thermal decomposition of metal carbonates

Learning Outcomes:

- 1) Describe the thermal decomposition of metal carbonates
- 2) Write the word equations for these reactions

When heated, metal carbonates decompose to form a metal oxide and carbon dioxide:

metal oxide carbon dioxide carbonate

For example:

> copper oxide + carpon dioxide copper carbonate $cuco_3 \rightarrow cuco + co_2$ Try some more word equations for thermal decomposition of metal carbonates:

magnesium carbonate > magnesium oxide + carbon dioxide mg co3 -> mg 0 + co2

calcium oxide + carbon dioxide Ca CO3 > Ca O + CO2

sodium carbonate > sodium oxide + caubon dioxide Naz CO3 -> Naz O + CO2

lithium carbonate > lithium oxide + carbon dioxide hi2 CO3 -> hi2 O + CO2

potassium carbonate potassium oxide + carbon dioxide $K_2CO_3 \rightarrow K_2O + CO_2$

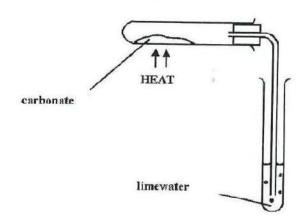
Task: now go back and write the chemical equation for each of the above thermal decomposition reactions.

Practical Thermal decomposition of metal carbonates

△ Safety

Test tube gets very hot – take care not to touch!.

To prevent suck back, remove lime water before heat is stopped,


Risk of alkali in eyes or on hands.

We will heat a range of metal carbonates.

For each we will measure the mass before and after.

We will also test any gas produced to see if it is carbon dioxide.

How can we make sure the reactions had finished?

Results

Metal carbonate	Formula	Mass before	Mass after	Mass change	Observations of limewater
Copper carbonate	CuCO₃				doudy
Potassium carbonate	K ₂ CO ₃				goes
Zinc carbonate	ZnCO ₃				turns doudy
					tuns doudy

4	coo re	energ	until ma	as de	الما	not	marge
il n	epeat	until	constant	mass	Jh		*

Why did the solid change mass, and what does the change in mass represent?
- loss of CO2 at a gas.
Write the word equations and the chemical equations for the reactions that happened.
① copper → copper + carbon currence oxide dioxide
Cu Co ₃ → CuO + CO ₂
@ potassium -> potassium + carbon
© potassium -> potassium + carbon carbonate oxide dioxide K2CO3 -> K2O + CO2
(3) zinc contenate -> zinc oxide + carbon dioxide
Extension: For each of the reactions, was the change in mass what we could have expected? How can we calculate what the change in mass should have been in a perfect experiment?
•

Write the word and chemical equations for the reactions of the following elements and oxygen.

Example

Magnesium reacts with oxygen to give magnesium oxide

- 1) Write the correct formulae (Oxygen gas is always O2). Remember to use the charges on the ions.
- 2) Balance
 - o magnesium + oxygen → magnesium oxide
 o 2Mg + O₂ → 2MgO
- Copper reacts with oxygen to give copper(II) oxide --> Cu2+ O2-

2. Sulfur reacts with oxygen to give sulfur dioxide (SO₂)

3. Carbon reacts with oxygen to give carbon dioxide(CO2)

$$C_{(5)}^{+} O_{2(9)} \longrightarrow CO_{2(9)}$$

4. Calcium reacts with oxygen to give calcium oxide

$$2Ca + O_2 \rightarrow 2CaO$$
(5) (9) (5)

Aluminium reacts with oxygen to give aluminium oxide → AI3+ ○2-

$$4A1 + 30_2 \rightarrow 2A1_2 O_3 (5)$$

Now go back and add state symbols to every formula.

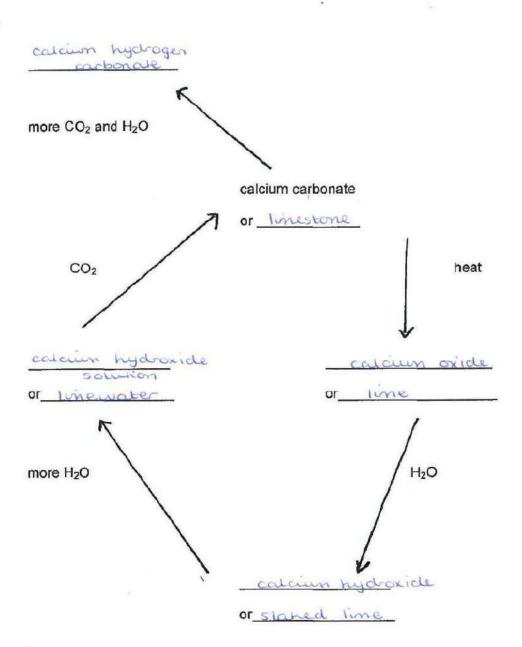
Chemical equations

You have learnt the following key reactions:

Alkali	+	acid	\rightarrow	salt	+	water		
Base	+	acid	>	salt	+	water		
Carbonate	+	acid	>	salt	+	water	+	carbon dioxide
Metal	+	acid	>	salt	+	hydrogen		
metal	+	oxyge	n →	metal	oxide			(NB: oxygen gas is always O ₂)
carbonate			\rightarrow	metal	oxide	+ carbon dioxide		(thermal decomposition)

Task write chemical equations for the following reactions.

Remember to do the following steps:


- . Identify the key reaction in order to help you work out the products
- · Work out the correct formulae for the reactants and products
- · Balance the whole equation

The first one has been done for you.

```
Zinc + oxygen → Zinc
     (e)
                                oxide
         2Zn + O_2 \rightarrow 2ZnO
                         (heat)
                              magnesium + carbon
          Magnesium carbonate
     (f)
                                oxide
                                        diox ide
           Mg CO3 -> Mg O + CO2
                          > zinc + hydrogen
          hydrochloric + zinc
     (g)
MASH
          acid
                               chlonde
                + 2n -> ZnCl2 + H2
           2HCI
          sulfuric + calcium + carbon + mater
     (h)
 CAWS
                     carbonate suifale
           acid
                                        dioxide
          H2SO4 + caco3 -> caso4 + co2 + H2O
 COD
                     iron(11) + iron (11) + water
          Nitric +
     (i)
                      hydroxide
                               nirate
A-AWS
           acid
          2HNO3 + Fe(OH)2 -> Fe(NO3)2 + 2H2O
                            4: H:2
                            2:0:1
                + ammonium + annonium + water
          sulfuric
     (j)
                      hydroxide
AAWS
                               suifate
          H2SO4 +2NH4OH -> (NH4)2 SO4 +2H2O
                            4: H: 2
                            2 0:1
                             + rub idum + hydrogen
           hydrochloric + rubidium
     (k)
 MASH
           acid
                               chloride
          2HCI + 2Rb -> 2RbCI + H2
```

```
copper(11) + copper (11) + water
            sulfuric +
     (1)
            acid
                     oxide
                                  suifale
   BANVS
           Hz SQ+ + CuO -> Cu SO4. + H20
                  + aluminium + aluminium + hydrogen
     (m)
           nitric
           acid
MASH
          3HNO3 + A1 -> A1(NO3)3 +12H2
           hydrochloric + ammonium + annonium + carbon + water
    (n)
           acid
CAWS
                                      chloride
            2HCI + (NH4)2 CO3 -> 2NH4 CI + CO2 + H2O
 COD
    (o)
           Hydrochloric acid reacts with a piece of aluminium producing a colourless solution and a gas.
                                                                  MASH
                 3HCI + AI -> AICI3 + 17Hz
                   hydrochlone + chunium + aunnum + hydrogen
           Fizzing is observed when potassium carbonate is placed into sulfuric acid
    (p)
           porassium + surfino -> porassium (CAWS COD) + conton + conton + conton + conton
               K2 CO3 + H2 SO4 -> K2 SO4 + CO2 + H2O
           Ammonium hydroxide is neutralised by adding nitric acid
    (q)
                hydroxide + nime - annonium + water
                       NH4 OH + HNO3 -> NH4NO3 + H20
    (r)
           On heating zinc carbonate produces a gas that is collected and turns limewater cloudy
                 zinc zinc + caubon carbonate > oxide + dioxide
                  Zn CO3 → ZnO + CO2
           A black powder of copper oxide is dissolved into warm sulfuric acid. The solution turns blue.
    (s)
                   copper + sulfure - copper oxide + acid sulfate + water
                    cuo + H2SQ4 -> Cuso4 + H2O
```

Complete the following cycle using chemical and common names:

