(b) Elements, compounds and mixtures

1:08 understand how to classify a substance as an element, a compound or a mixture

Element: The simplest type of substances made up of only one type of atom.

Compound: A substance that contains two or more elements chemically joined together.

Mixture: Different substances in the same space, but not chemically combined.

Note: elements such as oxygen (O2) are described as diatomic because they contain two atoms.

The full list of elements that are diatomic is:

  • Hydrogen (H2)
  • Nitrogen (N2)
  • Fluorine (F2)
  • Oxygen (O2)
  • Iodine (I2)
  • Chlorine (Cl2)
  • Bromine (Br2)

1:09 understand that a pure substance has a fixed melting and boiling point, but that a mixture may melt or boil over a range of temperatures

Pure substances, such as an element or a compound, melt and boil at fixed temperatures.

However, mixtures melt and boil over a range of temperatures.

Example: although pure water boils at 100⁰C, the addition of 10g of sodium chloride (NaCl) to 1000cm³ of water will raise the boiling point to 100.2⁰C.

Example: although pure water melts at 0⁰C, the addition of 10g of sodium chloride (NaCl) to 1000cm³ of water will lower the melting point to -0.6⁰C.

1:10 describe these experimental techniques for the separation of mixtures: simple distillation, fractional distillation, filtration, crystallisation, paper chromatography

Simple distillation

This method is used to separate a liquid from a solution. For example: separating water from salt water.

The salt water is boiled. The water vapour condenses back into a liquid when passed through the condenser. The salt is left behind in the flask.

Note: cold water is passed into the bottom of the condenser and out through the top so that the condenser completely fills up with water.


Fractional distillation

This method is used to separate a mixture of different liquids that have different boiling points. For example, separating alcohol from a mixture of alcohol and water.

Water boils at 100oC and alcohol boils at 78oC. By using the thermometer to carefully control of temperature of the column, keeping it at 78oC, only the alcohol remains as vapour all the way up to the top of the column and passes into the condenser.

The alcohol vapours then condense back into a liquid.




This method is used to separate an insoluble solid from a liquid. For example: separating sand from a mixture of sand and water.

The mixture is poured into the filter paper. The sand does not pass through and is left behind (residue) but the water passes through the filter paper and is collected in the conical flask (filtrate).




This method is used to obtain a salt which contains water of crystallisation from a salt solution. For example: hydrated copper sulfate crystals (CuSO4.5H2O(s)) from copper sulfate solution (CuSO4(aq)).

Gently heat the copper sulfate solution in an evaporating basin until a hot saturated solution forms. Leave in a warm place to allow the hydrated copper sulfate crystals to form. Remove the crystals by filtration and wash with distilled water. Dry by leaving in a warm place.

If instead the solution is heated until all the water evaporates, you would produce a powder of anhydrous copper sulfate (CuSO4(s)).


Paper chromatography

This method can be used to separate the parts of a mixture into their components. For example, the different dyes in ink can all be separated and identified.

The coloured mixture to be separated (e.g. a food dye) is dissolved in a solvent like water or ethanol and carefully spotted onto the chromatography paper on the baseline, which is drawn in pencil so it doesn’t ‘run or smudge’.

The paper is carefully dipped into the solvent and suspended so the baseline is above the liquid solvent, otherwise all the spots would dissolve in the solvent. The solvent is absorbed into the paper and rises up it as it soaks into the paper. The choice of solvent depends on the solubility of the dye. If the dye does not dissolve in water then normally an organic solvent (e.g. ethanol) is used.

As the solvent rises up the paper it will carry the dyes with it. Each different dye will move up the paper at different rates depending on how strongly they stick to the paper and how soluble they are in the solvent.

1:11 understand how a chromatogram provides information about the composition of a mixture

Paper chromatography can be used to investigate the composition of a mixture.

A baseline is drawn on the paper. The mixture is spotted onto the baseline alongside known or standard reference materials. The end of the paper is then put into a solvent which runs up the paper and through the spots, taking some or all of the dyes with it.

Different dyes will travel different heights up the paper.

The resulting pattern of dyes is called a chromatogram.

In the example shown, the mixture is shown to contain the red, blue and yellow dyes. This can be seen because these dots which resulted from the mixture have travelled the same distance up the paper as have the red, blue and yellow standard reference materials.

1:12 understand how to use the calculation of Rf values to identify the components of a mixture

When analysing a chromatogram, the mixture being analysed is compared to standard reference materials by measuring how far the various dyes have travelled up the paper from the baseline where they started.

For each dye, the Rf value is calculated. To do this, 2 distances are measured:

  • The distance between the baseline and the dye
  • The distance between the baseline and the solvent front, which is how far the solvent has travelled from the baseline

The Rf value is calculated as follows:

 R_f=\frac{distance\:of\:dye\:from\:baseline }{distance\:of\:solvent\:front\:from\:baseline}

If the Rf value of one of the components of the mixture equals the Rf value of one of the standard reference materials then that component is know to be that reference material. 

Note that because the solvent always travels at least as far as the highest dye, the Rf value is always between 0 and 1.

Dyes which are more soluble will have higher Rf values than less soluble dyes. In other words, more soluble dyes move further up the paper. The extreme case of this is for insoluble dyes which don’t move at all (Rf value = 0). The other aspect affecting how far a dye travels is the affinity that dye has for the paper (how well it ‘sticks’ to the paper).

1:13 practical: investigate paper chromatography using inks/food colourings

  1. A pencil line (baseline) is drawn 1cm from the bottom of the paper. Pencil will not dissolve in the solvent, but if ink were used instead it might dissolve and interfere with the results of the chromatography.
  2. A spot of each sample of dye is dropped at different points along the baseline.
  3. The paper is suspended in a beaker which contains a small amount of solvent. The bottom of the paper should be touching the solvent, but the baseline with the dyes should be above the level of the solvent. This is important so the dyes don’t simply dissolve into the solvent in the beaker.
  4. A lid should cover the beaker so the atomosphere becomes saturated with the solvent. This is so the solvent does not evaporate from the surface of the paper.
  5. When the solvent has travelled to near the top of the paper, the paper is removed from the solvent and a pencil line drawn (and labelled) to show the level the solvent reached up the paper. This is called the solvent front.
  6. The chromatogram is then left to dry so that all the solvent evaporates.

Common solvents are water or ethanol. The choice of solvent depends on whether most of the dyes are soluble in that solvent.

Select a set of flashcards to study:


     Skills and equipment

     Remove Flashcards

Section 1: Principles of chemistry

      a) States of matter

      b) Atoms

      c) Atomic structure

     d) Relative formula masses and molar volumes of gases

     e) Chemical formulae and chemical equations

     f) Ionic compounds

     g) Covalent substances

     h) Metallic crystals

     i) Electrolysis

 Section 2: Chemistry of the elements

     a) The Periodic Table

     b) Group 1 elements: lithium, sodium and potassium

     c) Group 7 elements: chlorine, bromine and iodine

     d) Oxygen and oxides

     e) Hydrogen and water

     f) Reactivity series

     g) Tests for ions and gases

Section 3: Organic chemistry

     a) Introduction

     b) Alkanes

     c) Alkenes

     d) Ethanol

Section 4: Physical chemistry

     a) Acids, alkalis and salts

     b) Energetics

     c) Rates of reaction

     d) Equilibria

Section 5: Chemistry in industry

     a) Extraction and uses of metals

     b) Crude oil

     c) Synthetic polymers

     d) The industrial manufacture of chemicals