The entire quiz question bank!

This quiz pulls questions at random from the entire 1100+ question-bank

1. The diagram shows the conversions between various states of matter. What is represented by X, Y and Z?

Question 1 of 10

2. If pieces of lithium, potassium and sodium were cut and exposed to air, how could observations of the different reactions indicate the relative reactivity of those 3 metals?

Question 2 of 10

3. What is a general formula?

Question 3 of 10

4. Explain how the atoms are held together in a hydrogen bromide molecule

Question 4 of 10

5. What is the name of this molecule?

Question 5 of 10

6. Calculate the relative formula mass(Mr) of calcium carbonate (CaCO₃)

Question 6 of 10

7. What is the pH of a strong alkali?

Question 7 of 10

8. In the electrolysis of molten aluminium oxide, write the name and formula of the particles which move to the negative electrode

Question 8 of 10

9. What is the formula for calcium bromide?

Question 9 of 10

10. State the names and molecular formulae of the first 3 alkenes

Question 10 of 10


2022-03-09T21:22:06+00:00Categories: Uncategorized|Tags: |

The entire quiz question bank (Double only)!

This quiz pulls questions at random from the entire Double-only question-bank

Please go to The entire quiz question bank (Double only)! to view this quiz
2022-03-09T21:20:41+00:00Categories: Uncategorized|Tags: |

Key Calculations quiz

Please go to Key Calculations quiz to view this quiz
2020-02-16T17:35:16+00:00Categories: Uncategorized|Tags: , |

Equilibria (triple) quiz

Please go to Equilibria (triple) quiz to view this quiz
2020-02-16T17:37:02+00:00Categories: Uncategorized|Tags: , |

Condensation Polymers quiz

Please go to Condensation Polymers quiz to view this quiz
2020-02-16T17:24:10+00:00Categories: Uncategorized|Tags: , |

Electrolysis quiz

Please go to Electrolysis quiz to view this quiz
2020-02-16T17:18:38+00:00Categories: Uncategorized|Tags: , |

Alcohols & Carboxylic Acids quiz

Please go to Alcohols & Carboxylic Acids quiz to view this quiz
2020-02-16T17:13:00+00:00Categories: Uncategorized|Tags: , |

Acids & Salts (Triple) quiz

Please go to Acids & Salts (Triple) quiz to view this quiz
2020-02-16T17:11:05+00:00Categories: Uncategorized|Tags: , |

Energetics (Triple) quiz

Please go to Energetics (Triple) quiz to view this quiz
2020-02-16T16:59:30+00:00Categories: Uncategorized|Tags: , |

Moles quiz

Please go to Moles quiz to view this quiz
2020-02-16T16:53:45+00:00Categories: Uncategorized|Tags: , |

Metal Reactivity & Halogens quiz

Please go to Metal Reactivity & Halogens quiz to view this quiz
2020-02-16T16:50:09+00:00Categories: Uncategorized|Tags: , |

Kinetics quiz

Please go to Kinetics quiz to view this quiz
2020-02-16T16:44:05+00:00Categories: Uncategorized|Tags: , |

Calculations quiz

Please go to Calculations quiz to view this quiz
2020-02-16T16:38:53+00:00Categories: Uncategorized|Tags: , |

Alkanes & Crude Oil quiz

Please go to Alkanes & Crude Oil quiz to view this quiz
2020-02-16T16:34:17+00:00Categories: Uncategorized|Tags: , |

Simple Molecules & Covalent Bonding quiz

Please go to Simple Molecules & Covalent Bonding quiz to view this quiz
2020-02-22T20:57:55+00:00Categories: Uncategorized|Tags: , |

Key Reactions quiz

Please go to Key Reactions quiz to view this quiz
2020-02-16T16:28:50+00:00Categories: Uncategorized|Tags: , |

Separating Techniques quiz

Please go to Separating Techniques quiz to view this quiz
2020-02-16T15:50:46+00:00Categories: Uncategorized|Tags: , |

Ions quiz

Please go to Ions quiz to view this quiz
2020-02-22T20:52:55+00:00Categories: Uncategorized|Tags: , |

Fundamentals quiz

Please go to Fundamentals quiz to view this quiz
2020-02-16T15:32:22+00:00Categories: Uncategorized|Tags: , |

Alkenes & Polymers quiz

Please go to Alkenes & Polymers quiz to view this quiz
2020-02-16T15:14:58+00:00Categories: Uncategorized|Tags: , |

Structure & Bonding (Triple) quiz

Please go to Structure & Bonding (Triple) quiz to view this quiz
2020-02-16T12:32:52+00:00Categories: Uncategorized|Tags: , |

Structure & Bonding (Double) quiz

Please go to Structure & Bonding (Double) quiz to view this quiz
2020-03-11T12:55:09+00:00Categories: Uncategorized|Tags: , |

1.01 use the following units: kilogram (kg), metre (m), metre/second (m/s), metre/second^2(m/s^2), newton (N), second (s) and newton/kilogram(N/kg)

Make sure you are familiar with units for 

Mass: kilogram (kg)

Distance: metre (m)

Speed: metre per second (m/s)

Acceleration: metre per second squared (m/s^2)

Force: newton (N)

Time: second (s) 

Gravity: newton/kilogram (N/kg) 


1.02 use the following units: Newton metre (Nm), kilogram metre/second (kgm/s)

the units of:

moment: Newton metre (Nm)

momentum: kilogram metre/second (kgm/s) 


1.03 plot and explain distance-time graphs

A distance time graph has distance on the y axis (usually in metres) and time on the x axis (usually in seconds). The gradient of the line (change in y/ change in x) is the speed. If the line is flat then the object is stationary.    

1.04 know and use the relationship between average speed, distance moved and time taken

To calculate average speed use 

speed (m/s) = distance travelled (m)/ time taken (s)

1.05 practical: investigate the motion of everyday objects such as a toy car or tennis ball

Apparatus: stop watch and metre rule

mark the start and end positions for the know distance 

use a metre rule to measure the distance 

line up front of car with start point, release and start timer 

move eyes to end point 

stop timer when front of car passes end point 

improve by repeating and averaging 

make sure car starts from stationary 

calculate average speed using : average speed = distance travelled/ time taken

1.06 know and use the relationship between acceleration, change in velocity and time taken

1.07 plot and explain velocity-time graphs

on a velocity time graph the velocity-time graph the velocity is on the y axis (usually in m/s) and time is on the x axis (usually in s). If the line is flat then the object is moving at a constant velocity. the gradient of the line is the acceleration. The area under the line is the distance travelled.  

1.08 determine acceleration from the gradiend of a velocity-time graph

Gradient = acceleration= change in y/ change in x = change in velocity/time 

1.09 determine the distance travelled from the area between a velocity-time graph and the time axis

The area under the graph can be calculated as rectangles and triangles, or by counting boxes, is equal to the distance travelled. 

1.10 use the relationship between final speed, initial speed, aceleration and distance moved


v= final speed

u= initial speed

a= acceleration 

s= distance moved 

see all the rearrangements of this equation. 

1.11 describe the effects of forces between bodies such as changes in speed, shape or direction

Forces can act on a body to change the velocity, so the speed, direction or both.

Or forces can change the shape of a body, stretching it squishing it or twisting it. 

1.12 identify different types of force such as gravitational or electrostatic

different types of forces include:

Gravitational, weight, friction, electrostatic, air resistance (drag), tension (force in a spring), up thrust, lift, thrust 

1.13 understand how vector quantities differ from scalar quantities

scalars are quantities with only magnitude (size)

vectors are quantities with magnitude (size) and direction 

1.14 understand that force is a vector quantity

Force has a magnitude measured in (N) but it also has a direction, a push or a pull, up, down, left or right. So force is a vector.  

1.15 calculate the resultant force of forces that act along a line

Forces along a line can combine by addition.  

1.16 know that friction is a force that opposes motion

Friction is caused by surfaces rubbing. The force always acts in the opposite direction to motion.   

1.17 know and use the relationship between unbalanced force, mass and acceleration : F = M x A

Force = Mass x Acceleration.

the force refers to the resultant force or the combined forces as seen in 1.15 

1.18 know and use the relationship between weight, mass and gravitational field strength: W=mxg

Weight (N)= Mass (kg) x gravitational field strength (N/kg)

gravitational field strength on earth is approx. 10 N/kg and in GCSEs is taken to be 10 N/kg. 

1.19 know that the stopping distance of a vehicle is made up of the sum of the thinking distance and the breaking distance

Stopping distance = Thinking distance + Breaking distance 

1.20 describe the factors affecting vehicle stopping distance, including speed, mass, road condition and reaction time

Thinking distance Affected by:



speed of the car

Drugs (avoid as drugs can increase or decrease thinking distance) 

Braking distance affected by:

Road conditions 

Tyre conditions 

Brake conditions 

speed of the car

mass of the car


1.21 describe the forces acting on falling objects (explain why falling objects reach a terminal velocity)

Initially the only force is weight as drag is proportional to velocity. So the object accelerates downwards. As it accelerates the velocity so the drag increases as well. meaning there is a smaller resultant force downwards so a smaller acceleration. Until the object reaches a speed where the drag is equal to the weight meaning there is no acceleration, this velocity is know as terminal velocity. 

1.22 practical investigate how extension varies with applied force for helical springs, metal wires and rubber bands

  1. Set up your apparatus as shown in the
  2. Measure the length of your spring without
    any hanging masses.
  3. Hang a mass of 100g on the spring
  4. Measure the new length of the spring
  5. Calculate the extension of the spring
  6. Repeat steps 3-5 for increasing the mass
    in increments of 100g
  7. Take note of your results in the table.

1.23 know the the initial linear region of a force-extension graph is associated with Hooke’s law

Hooke’s law is that extension is directly proportional to force applied. This is shown by the straight line on the force-extension graph. Hooke’s law is obeyed as long as the line is straight.   

1.24 describe elastic behaviour as the ability of a material to recover its original shape after the forces causing the deformation have been removed

Elastic behaviour is the ability of a material to recover original shape after the force is removed. in a spring this occurs when the force is lower than the elastic limit. loading and unloading force extension curves can be different as long as it returns to its original shape. 

1.25 know and use the relationship between momentum, mass and velocity: P=m x v

momentum (kgm/s)= mass (kg) x velocity (m/s) 

1.26 use the idea of momentum to explain safety features

To reduce the force experienced by the passenger you need to extend the time for a passenger to stop in a collision. As force is the change in momentum divided by time.  

1.27 use the conservation of momentum to calculate the mass, velocity or momentum of objects

1.28 use the relationship between force, change in momentum and time take

Force is the rate of change of momentum. So Force (N) = change in momentum (kgm/s) / time (s)  

Select a set of flashcards to study:


     Skills and equipment

     Remove Flashcards

Section 1: Principles of chemistry

      a) States of matter

      b) Atoms

      c) Atomic structure

     d) Relative formula masses and molar volumes of gases

     e) Chemical formulae and chemical equations

     f) Ionic compounds

     g) Covalent substances

     h) Metallic crystals

     i) Electrolysis

 Section 2: Chemistry of the elements

     a) The Periodic Table

     b) Group 1 elements: lithium, sodium and potassium

     c) Group 7 elements: chlorine, bromine and iodine

     d) Oxygen and oxides

     e) Hydrogen and water

     f) Reactivity series

     g) Tests for ions and gases

Section 3: Organic chemistry

     a) Introduction

     b) Alkanes

     c) Alkenes

     d) Ethanol

Section 4: Physical chemistry

     a) Acids, alkalis and salts

     b) Energetics

     c) Rates of reaction

     d) Equilibria

Section 5: Chemistry in industry

     a) Extraction and uses of metals

     b) Crude oil

     c) Synthetic polymers

     d) The industrial manufacture of chemicals

Go to Top